DOI QR코드

DOI QR Code

The development of four efficient optimal neural network methods in forecasting shallow foundation's bearing capacity

  • Hossein Moayedi (Institude of Research and Development, Duy Tan University) ;
  • Binh Nguyen Le (Institude of Research and Development, Duy Tan University)
  • Received : 2023.06.22
  • Accepted : 2023.10.05
  • Published : 2024.08.25

Abstract

This research aimed to appraise the effectiveness of four optimization approaches - cuckoo optimization algorithm (COA), multi-verse optimization (MVO), particle swarm optimization (PSO), and teaching-learning-based optimization (TLBO) - that were enhanced with an artificial neural network (ANN) in predicting the bearing capacity of shallow foundations located on cohesionless soils. The study utilized a database of 97 laboratory experiments, with 68 experiments for training data sets and 29 for testing data sets. The ANN algorithms were optimized by adjusting various variables, such as population size and number of neurons in each hidden layer, through trial-and-error techniques. Input parameters used for analysis included width, depth, geometry, unit weight, and angle of shearing resistance. After performing sensitivity analysis, it was determined that the optimized architecture for the ANN structure was 5×5×1. The study found that all four models demonstrated exceptional prediction performance: COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP. It is worth noting that the MVO-MLP model exhibited superior accuracy in generating network outputs for predicting measured values compared to the other models. The training data sets showed R2 and RMSE values of (0.07184 and 0.9819), (0.04536 and 0.9928), (0.09194 and 0.9702), and (0.04714 and 0.9923) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively. Similarly, the testing data sets produced R2 and RMSE values of (0.08126 and 0.07218), (0.07218 and 0.9814), (0.10827 and 0.95764), and (0.09886 and 0.96481) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively.

Keywords

References

  1. A Brief History of the Multiverse (2003), A Brief History of the Multiverse; The New York Times, New York, NY, USA. https://www.nytimes.com/2003/04/12/opinion/a-brief-history-of-the-multiverse.html
  2. Abedini, M. and Zhang, C. (2022), "Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading", Steel Compos. Struct., 45(3), 389-408. https://doi.org/10.12989/scs.2022.45.3.389.
  3. Al-Salloum, Y.A., Shah, A.A., Alsayed, S.H., Almusallam, T.H., Al-Haddad, M.S. and Abbas, H. (2012), "Prediction of compressive strength of concrete using neural networks", Comput. Concrete, 10(2), 197-217. https://doi.org/10.12989/cac.2012.10.2.197.
  4. Al-Shamsi, K.S.M. (1993), "Internal report", Department of Civil Engineering, Sultan Qaboos University, Al Seeb, Oman.
  5. Alsarraf, J., Moayedi, H., Rashid, A.S.A., Muazu, M.A. and Shahsavar, A. (2020), "Application of PSO-ANN modelling for predicting the exergetic performance of a building integrated photovoltaic/thermal system", Eng. Comput., 36(2), 633-646. https://doi.org/10.1007/s00366-019-00721-4.
  6. Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.
  7. Bilgehan, M. and Turgut, P (2010), "The use of neural networks in concrete compressive strength estimation", Comput. Concrete, 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271.
  8. Briaud, J.L. and Gibbens, R. (1999), "Behavior of five large spread footings in sand", J. Geotech. Geoenviron. Eng., 125(9), 787-796. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(787).
  9. Cao, J., Du, J., Fan, Q., Yang, J., Bao, C., ... and Liu, Y. (2024), "Reinforcement for earthquake-damaged glued-laminated timber knee-braced frames with self-tapping screws and CFRP fabric", Eng. Struct., 306, 117787. https://doi.org/10.1016/j.engstruct.2024.117787.
  10. Chen, S., Zhang, H., Zykova, K.I., Touchaei, H.G., Yuan, C., Moayedi, H. and Le, B.N. (2023), "Computational intelligence models for predicting the frictional resistance of driven pile foundations in cold regions", Comput. Concrete, 32(2), 217-232. https://doi.org/10.12989/cac.2023.32.2.217.
  11. Das, B.M. and Sivakugan, N. (2018), Principles of Foundation Engineering, Cengage Learning, Boston, MA, USA.
  12. De Beer, E.E. (1965), "The scale effect on the phenomenon of progressive rupture in cohesionless soils", The Sixth International Conference on Soil Mechanics and Foundation Engineering, Montreal, Canada, September.
  13. Du, K.L., Lai, A.K.Y, Cheng, K.K.M. and Swamy, M.N.S. (2002), "Neural methods for antenna array signal processing: A review", Sign. Pr., 82(4), 547-561. https://doi.org/10.1016/S0165-1684(01)00185-2.
  14. Ellis, G.W., Yao, C., Zhao, R. and Penumadu, D.F. (1995), "Stress-strain modeling of sands using artificial neural networks", J. Geotech. Eng., 121(5), 429-435. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(429).
  15. Gao, Q., Ding, Z. and Liao, W. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269.
  16. Goh, A.T.C. (1994), "Nonlinear modelling in geotechnical engineering using neural networks", Trans. Inst. Eng. Aust. Civil Eng., 36(4), 293-297.
  17. Golafshani, E.M. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 419-437. https://doi.org/10.12989/cac.2018.22.4.419.
  18. Hansen, J.B. (1970), "A revised and extended formula for bearing capacity", Dan. Geotech. Inst. Bull., 28, 5-11.
  19. Hodhod, O.A., Said, T.E. and Ataya, A.M. (2018), "Prediction of creep in concrete using genetic programming hybridized with ANN", Comput. Concrete, 21(5), 513-523. https://doi.org/10.12989/cac.2018.21.5.513.
  20. Hu, D., Hu, Y., Yi, S., Liang, X., Li, Y., ... and Yang, X. (2024), "Surface settlement prediction of rectangular pipe-jacking tunnel based on the machine-learning algorithm", J. Pipeline Syst. Eng. Pract., 15(1), 04023061. https://doi.org/10.1061/JPSEA2.PSENG-1453.
  21. Huang, B. and Wang, J. (2020), "Deep-reinforcement-learning-based capacity scheduling for PV-battery storage system", IEEE Trans. Smart Grid, 12(3), 2272-2283. https://doi.org/10.1109/TSG.2020.3047890
  22. Huang, B., Zhao, T., Yue, M. and Wang, J. (2023), "Bi-level adaptive storage expansion strategy for microgrids using deep reinforcement learning", IEEE Trans. Smart Grid, 15(2), 1362-1375 https://doi.org/10.1109/TSG.2023.3312225.
  23. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266.
  24. Huang, H., Huang, M., Zhang, W., Guo, M. and Liu, B. (2022), "Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column", Struct. Infrastr. Eng., 18(2), 249-265. https://doi.org/10.1080/15732479.2020.1841245.
  25. Lawal, A.I. and Kwon, S.K. (2023), "Development of mathematically motivated hybrid soft computing models for improved predictions of ultimate bearing capacity of shallow foundations", J. Rock Mech. Geotech. Eng., 15(3), 747-759. https://doi.org/10.1016/j.jrmge.2022.04.005.
  26. Lee, I.M., Lee, J.H. (1996), "Prediction of pile bearing capacity using artificial neural networks", Comput. Geotech., 18(3), 189-200. https://doi.org/10.1016/0266-352X(95)00027-8
  27. Li, J., Chen, M. and Li, Z. (2022), "Improved soil-structure interaction model considering time-lag effect", Comput. Geotech., 148, 104835. https://doi.org/10.1016/j.compgeo.2022.104835.
  28. Li, J., Liu, Y. and Lin, G. (2023), "Implementation of a coupled FEM-SBFEM for soil-structure interaction analysis of large-scale 3D base-isolated nuclear structures", Comput. Geotech., 162, 105669. https://doi.org/10.1016/j.compgeo.2023.105669.
  29. Lin, Z., Wang, H. and Li, S. (2022), "Pavement anomaly detection based on transformer and self-supervised learning", Automat. Constr., 143, 104544. https://doi.org/10.1016/j.autcon.2022.104544.
  30. Liu, H., Chen, J., Zhang, X., Dai, D., Cui, J., ... and Spencer, B.F. (2024), "Collaborative imaging of subsurface cavities using ground-pipeline penetrating radar", IEEE Geosci. Remote Sens. Lett., 21, 1-5. https://doi.org/10.1109/LGRS.2024.3390668.
  31. Liu, X., Shi, T., Zhou, G., Liu, M., Yin, Z., Yin, L. and Zheng, W. (2023a), "Emotion classification for short texts: An improved multi-label method", Human. Soc. Sci. Commun., 10(1), 1-9. https://doi.org/10.1057/s41599-023-01816-6.
  32. Liu, X., Wang, S., Lu, S., Yin, Z., Li, X., Yin, L., Tian, J., Zheng, W. (2023b), "Adapting feature selection algorithms for the classification of chinese texts", Syst., 11(9), 483. https://doi.org/10.3390/systems11090483.
  33. Lu, D., Liang, J., Du, X., Ma, C. and Gao, Z. (2019), "Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule", Comput. Geotech., 105, 277-290. https://doi.org/10.1016/j.compgeo.2018.10.004.
  34. Lu, D., Ma, C., Du Xiuli, Jin, L. and Gong, Q. (2017), "Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept", Int. J. Geomech., 17(2). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729.
  35. Luo, C., Wang, L., Xie, Y. and Chen, B. (2022a), "A new conjugate gradient method for moving force identification of vehicle-bridge system", J. Vib. Eng. Technol., 12(1), 19-36. https://doi.org/10.1007/s42417-022-00824-1.
  36. Luo, Z., Wang, H. and Li, S. (2022b), "Prediction of international roughness index based on stacking fusion model", Sustainab., 14(12), 6949. https://doi.org/10.3390/su14126949.
  37. Meyerhof, G.G. (1963), "Some recent research on the bearing capacity of foundations", Can. Geotech. J., 1(1), 16-26. https://doi.org/10.1139/t63-003.
  38. Mirjalili, S., Mirjalili, S.M. and Hatamlou, A. (2016), "Multi-verse optimizer: A nature-inspired algorithm for global optimization", Neural Comput. Applicat., 27(2), 495-513. https://doi.org/10.1007/s00521-015-1870-7.
  39. Moayedi, H. and Dehrashid, A.A. (2023), "A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping", Environ. Sci. Pollut. Res., 30(34), 82964-82989. https://doi.org/10.1007/s11356-023-28133-4.
  40. Moayedi, H. and Hayati, S. (2018), "Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods", Appl. Soft Comput., 66, 208-219. https://doi.org/10.1016/j.asoc.2018.02.027.
  41. Muhs, H. (1974), "Inclined load tests on shallow strip footings", 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, Russia, January.
  42. Muhs, H. and Welss, K. (1971), "Untersuchung von Grenztragfahigkeit unel Setzungsverhaeten flachgegrundeter Einzelfundamente im ungleinchformigen nichbindigen", Boden Mitteilungen der Degebo an der Technischen Universitat, Berlin, Germany.
  43. Muhs, H., Elmiger, R. and Weiss, K. (1969), Sohlreibung und Grenztragfahigkeit unter lotrecht und schrag belasteten Einzelfundamenten; mit 128 Bildern und 13 Zahlentafeln, Ernst.
  44. Padmini, D., Ilamparuthi, K. and Sudheer, K.P. (2008), "Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models", Comput. Geotech., 35(1), 33-46. https://doi.org/10.1016/j.compgeo.2007.03.001.
  45. Perloff, W.H. and Baron, W. (1976), Soil Mechanics. Principles and Applications, Ronald press company, New York, NY, USA.
  46. Picton, P. (1994), Introduction to Neural Networks, Springer International Publishing, Cham, Switzerland.
  47. Prandtl, L. (1921), "Ueber die Eindringungsfestigkeit (Harte) plastischer Korper", J. Appl. Math. Mech., 1921, 1.
  48. Rahman, M.S., Wang, J., Deng, W. and Carter, J.P. (2001), "A neural network model for the uplift capacity of suction caissons", Comput. Geotech., 28(4), 269-287. https://doi.org/10.1016/S0266-352X(00)00033-1.
  49. Rajabioun, R. (2011), "Cuckoo optimization algorithm", Appl. Soft Comput., 11(8), 5508-5518. https://doi.org/10.1016/j.asoc.2011.05.008.
  50. Rao, R., Venkata, S., Vimal, J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015.
  51. Ray, R., Kumar, D., Samui, P., Roy, L.B., Goh, A.T.C. and Zhang, W. (2021), "Application of soft computing techniques for shallow foundation reliability in geotechnical engineering", Geosci. Front., 12(1), 375-383. https://doi.org/10.1016/j.gsf.2020.05.003.
  52. Ray, R., Samui, P. and Roy, L.B. (2023), "Reliability analysis of a shallow foundation on clayey soil based on settlement criteria", J. Curr. Sci. Technol., 13(1), 91-106.
  53. Reeves, C.R. (1993), Modern Heuristic Techniques for Combinatorial Problems, John Wiley & Sons Inc., Hoboken, NJ, USA.
  54. Reissner, H. (1924), "Zum erddruckproblem", Proceedings of the 1st International Conference for Applied Mechanics, Delft, The Netherlands, April.
  55. Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355.
  56. Shahin, M.A., Jaksa, M.B., Maier, H.R. (2000), "Predicting the settlement of shallow foundations on cohesionless soils using back-propagation neural networks", Research Report No. R 167; Department of Civil and Environmental Engineering, University of Adelaide, Adelaide, Australia.
  57. Shahin, M.A., Jaksa, M.B., Maier, H.R. (2009), "Recent advances and future challenges for artificial neural systems in geotechnical engineering applications", Adv. Artif. Neural Syst., 2009, 1.
  58. Shu, Z., Ning, B., Chen, J., Li, Z., He, M., Luo, J., ... and Dong, H. (2023), "Reinforced moment-resisting glulam bolted connection with coupled long steel rod with screwheads for modern timber frame structures", Earthq. Eng. Struct. Dyn., 52(4), 845-864. https://doi.org/10.1002/eqe.3789.
  59. Sivakugan, N., Eckersley, J. and Li, H. (1998), "Settlement predictions using neural networks", Aust. Civil Eng. Trans., 40, 49-52.
  60. Steenfelt, J.S. (1977), "Scale effect on bearing capacity factor nγ", The 9th ICSMFE, Tokyo, Japan, July.
  61. Su, Y., Wang, J., Li, D., Wang, X., Hu, L., Yao, Y. and Kang, Y. (2023), "End-to-end deep learning model for underground utilities localization using GPR", Automat. Constr., 149, 104776. https://doi.org/10.1016/j.autcon.2023.104776.
  62. Sun, Y., Dai, H., Moayedi, H., Nguyen Le, B., Muhammad Adnan, R. (2024), "Predicting steady-state biogas production from waste using advanced machine learning-metaheuristic approaches", Fuel, 355, 129493. https://doi.org/10.1016/j.fuel.2023.129493.
  63. Tahwia, A.M., Heniegal, A., Elgamal, M.S., Tayeh, B.A. (2021), "The prediction of compressive strength and non-destructive tests of sustainable concrete by using artificial neural networks", Comput. Concrete, 27(1), 21-28. https://doi.org/10.12989/cac.2021.27.1.021.
  64. Taleshi, A.A. and Hashemi, H. (2021), "Estimation of seismic attenuation in the Kangan formation from walkaway VSP data", J. Seismic Expl., 30(3), 201-210.
  65. Tatsuoka, F. (1991), "Progressive failure and particle size effect in bearing capacity of a footing on sand", Proceedings of ASCE Geotechnical Engineering Congress, Boulder, CO, USA, June.
  66. Taylor, R.N. (2018), Geotechnical Centrifuge Technology, CRC Press, Boca Raton, FL, USA.
  67. Teh, C.I., Wong, K.S., Goh, A.T.C. and Jaritngam, S. (1997), "Prediction of pile capacity using neural networks", J. Comput. Civil Eng., 11(2), 129-138. https://doi.org/10.1061/(ASCE)0887-3801(1997)11:2(129).
  68. Tejchman, J. and Herle, I. (1999), "A "class A" prediction of the bearing capacity of plane strain footings on sand", Soils Found., 39(5), 47-60. https://doi.org/10.3208/sandf.39.5_47.
  69. Terzaghi, K. (1943), Theoretical Soil Mechanics, John Wiley & Sons Inc., Hoboken, NJ, USA.
  70. Tian, L., Li, M., Li, L., Li, D. and Bai, C. (2023), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin Wall. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219.
  71. Vesic, A.S. (1973), "Analysis of ultimate loads of shallow foundations", J. Soil Mech. Found. Div., 99(1), 45-73. https://doi.org/10.1061/JSFEAQ.0001846.
  72. Wang, H., Zhang, X. and Jiang, S. (2022a), "A laboratory and field universal estimation method for tire-pavement interaction noise (TPIN) based on 3D image technology", Sustainab., 14(19), 12066. https://doi.org/10.3390/su141912066.
  73. Wang, W., Li, D.Q., Tang, X.S. and Du, W. (2023a), "Seismic fragility and demand hazard analyses for earth slopes incorporating soil property variability", Soil Dyn. Earthq. Eng., 173, 108088. https://doi.org/10.1016/j.soildyn.2023.108088.
  74. Wang, Y., Lou, M., Wang, Y., Fan, C., Tian, C. and Qi, X. (2023b), "Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string", Ocean Eng., 280, 114542. https://doi.org/10.1016/j.oceaneng.2023.114542.
  75. Wang, Y., Lou, M., Wang, Y., Wu, W. and Yang, F. (2022b), "Stochastic failure analysis of reinforced thermoplastic pipes under axial loading and internal pressure", Chin. Ocean Eng., 36(4), 614-628. https://doi.org/10.1007/s13344-022-0054-3.
  76. Weiss, K. (1970), Der Einfluss der Fundamentform auf die Grenztragfahigkeit flachgegrundeter Fundamente, Untersuchungen ausgef.... von Klaus Weiss: mit 14 Zahlentaf. Ernst.
  77. Zhang, W., Gu, X., Hong, L., Han, L. and Wang, L. (2023), "Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges", Appl. Soft Comput., 136, 110066. https://doi.org/10.1016/j.asoc.2023.110066.
  78. Zhang, W., Liu, X., Huang, Y. and Tong, M.N. (2022), "Reliability-based analysis of the flexural strength of concrete beams reinforced with hybrid BFRP and steel rebars", Arch. Civil Mech. Eng., 22(4), 171. https://doi.org/10.1007/s43452-022-00493-7.
  79. Zhang, X., Wang, S., Liu, H., Cui, J., Liu, C. and Meng, X. (2024), "Assessing the impact of inertial load on the buckling behavior of piles with large slenderness ratios in liquefiable deposits", Soil Dyn. Earthq. Eng., 176, 108322. https://doi.org/10.1016/j.soildyn.2023.108322.
  80. Zhao, Y., Gor, M., Voronkova, D.K., Gholizadeh Touchaei, H., Moayedi, H. and Nguyen Le, B. (2023), "An optimized ANFIS model for predicting pile pullout resistance", Steel Compos. Struct., 48(2), 179-190. https://doi.org/10.12989/scs.2023.48.2.179.
  81. Zhou, X., Lu, D., Zhang, Y., Du, X. and Rabczuk, T. (2022), A"n open-source unconstrained stress updating algorithm for the modified cam-clay model", Comput. Method. Appl. Mech. Eng., 390, 114356. https://doi.org/10.1016/j.cma.2021.114356.