References
- A Brief History of the Multiverse (2003), A Brief History of the Multiverse; The New York Times, New York, NY, USA. https://www.nytimes.com/2003/04/12/opinion/a-brief-history-of-the-multiverse.html
- Abedini, M. and Zhang, C. (2022), "Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading", Steel Compos. Struct., 45(3), 389-408. https://doi.org/10.12989/scs.2022.45.3.389.
- Al-Salloum, Y.A., Shah, A.A., Alsayed, S.H., Almusallam, T.H., Al-Haddad, M.S. and Abbas, H. (2012), "Prediction of compressive strength of concrete using neural networks", Comput. Concrete, 10(2), 197-217. https://doi.org/10.12989/cac.2012.10.2.197.
- Al-Shamsi, K.S.M. (1993), "Internal report", Department of Civil Engineering, Sultan Qaboos University, Al Seeb, Oman.
- Alsarraf, J., Moayedi, H., Rashid, A.S.A., Muazu, M.A. and Shahsavar, A. (2020), "Application of PSO-ANN modelling for predicting the exergetic performance of a building integrated photovoltaic/thermal system", Eng. Comput., 36(2), 633-646. https://doi.org/10.1007/s00366-019-00721-4.
- Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.
- Bilgehan, M. and Turgut, P (2010), "The use of neural networks in concrete compressive strength estimation", Comput. Concrete, 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271.
- Briaud, J.L. and Gibbens, R. (1999), "Behavior of five large spread footings in sand", J. Geotech. Geoenviron. Eng., 125(9), 787-796. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(787).
- Cao, J., Du, J., Fan, Q., Yang, J., Bao, C., ... and Liu, Y. (2024), "Reinforcement for earthquake-damaged glued-laminated timber knee-braced frames with self-tapping screws and CFRP fabric", Eng. Struct., 306, 117787. https://doi.org/10.1016/j.engstruct.2024.117787.
- Chen, S., Zhang, H., Zykova, K.I., Touchaei, H.G., Yuan, C., Moayedi, H. and Le, B.N. (2023), "Computational intelligence models for predicting the frictional resistance of driven pile foundations in cold regions", Comput. Concrete, 32(2), 217-232. https://doi.org/10.12989/cac.2023.32.2.217.
- Das, B.M. and Sivakugan, N. (2018), Principles of Foundation Engineering, Cengage Learning, Boston, MA, USA.
- De Beer, E.E. (1965), "The scale effect on the phenomenon of progressive rupture in cohesionless soils", The Sixth International Conference on Soil Mechanics and Foundation Engineering, Montreal, Canada, September.
- Du, K.L., Lai, A.K.Y, Cheng, K.K.M. and Swamy, M.N.S. (2002), "Neural methods for antenna array signal processing: A review", Sign. Pr., 82(4), 547-561. https://doi.org/10.1016/S0165-1684(01)00185-2.
- Ellis, G.W., Yao, C., Zhao, R. and Penumadu, D.F. (1995), "Stress-strain modeling of sands using artificial neural networks", J. Geotech. Eng., 121(5), 429-435. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(429).
- Gao, Q., Ding, Z. and Liao, W. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269.
- Goh, A.T.C. (1994), "Nonlinear modelling in geotechnical engineering using neural networks", Trans. Inst. Eng. Aust. Civil Eng., 36(4), 293-297.
- Golafshani, E.M. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 419-437. https://doi.org/10.12989/cac.2018.22.4.419.
- Hansen, J.B. (1970), "A revised and extended formula for bearing capacity", Dan. Geotech. Inst. Bull., 28, 5-11.
- Hodhod, O.A., Said, T.E. and Ataya, A.M. (2018), "Prediction of creep in concrete using genetic programming hybridized with ANN", Comput. Concrete, 21(5), 513-523. https://doi.org/10.12989/cac.2018.21.5.513.
- Hu, D., Hu, Y., Yi, S., Liang, X., Li, Y., ... and Yang, X. (2024), "Surface settlement prediction of rectangular pipe-jacking tunnel based on the machine-learning algorithm", J. Pipeline Syst. Eng. Pract., 15(1), 04023061. https://doi.org/10.1061/JPSEA2.PSENG-1453.
- Huang, B. and Wang, J. (2020), "Deep-reinforcement-learning-based capacity scheduling for PV-battery storage system", IEEE Trans. Smart Grid, 12(3), 2272-2283. https://doi.org/10.1109/TSG.2020.3047890
- Huang, B., Zhao, T., Yue, M. and Wang, J. (2023), "Bi-level adaptive storage expansion strategy for microgrids using deep reinforcement learning", IEEE Trans. Smart Grid, 15(2), 1362-1375 https://doi.org/10.1109/TSG.2023.3312225.
- Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266.
- Huang, H., Huang, M., Zhang, W., Guo, M. and Liu, B. (2022), "Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column", Struct. Infrastr. Eng., 18(2), 249-265. https://doi.org/10.1080/15732479.2020.1841245.
- Lawal, A.I. and Kwon, S.K. (2023), "Development of mathematically motivated hybrid soft computing models for improved predictions of ultimate bearing capacity of shallow foundations", J. Rock Mech. Geotech. Eng., 15(3), 747-759. https://doi.org/10.1016/j.jrmge.2022.04.005.
- Lee, I.M., Lee, J.H. (1996), "Prediction of pile bearing capacity using artificial neural networks", Comput. Geotech., 18(3), 189-200. https://doi.org/10.1016/0266-352X(95)00027-8
- Li, J., Chen, M. and Li, Z. (2022), "Improved soil-structure interaction model considering time-lag effect", Comput. Geotech., 148, 104835. https://doi.org/10.1016/j.compgeo.2022.104835.
- Li, J., Liu, Y. and Lin, G. (2023), "Implementation of a coupled FEM-SBFEM for soil-structure interaction analysis of large-scale 3D base-isolated nuclear structures", Comput. Geotech., 162, 105669. https://doi.org/10.1016/j.compgeo.2023.105669.
- Lin, Z., Wang, H. and Li, S. (2022), "Pavement anomaly detection based on transformer and self-supervised learning", Automat. Constr., 143, 104544. https://doi.org/10.1016/j.autcon.2022.104544.
- Liu, H., Chen, J., Zhang, X., Dai, D., Cui, J., ... and Spencer, B.F. (2024), "Collaborative imaging of subsurface cavities using ground-pipeline penetrating radar", IEEE Geosci. Remote Sens. Lett., 21, 1-5. https://doi.org/10.1109/LGRS.2024.3390668.
- Liu, X., Shi, T., Zhou, G., Liu, M., Yin, Z., Yin, L. and Zheng, W. (2023a), "Emotion classification for short texts: An improved multi-label method", Human. Soc. Sci. Commun., 10(1), 1-9. https://doi.org/10.1057/s41599-023-01816-6.
- Liu, X., Wang, S., Lu, S., Yin, Z., Li, X., Yin, L., Tian, J., Zheng, W. (2023b), "Adapting feature selection algorithms for the classification of chinese texts", Syst., 11(9), 483. https://doi.org/10.3390/systems11090483.
- Lu, D., Liang, J., Du, X., Ma, C. and Gao, Z. (2019), "Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule", Comput. Geotech., 105, 277-290. https://doi.org/10.1016/j.compgeo.2018.10.004.
- Lu, D., Ma, C., Du Xiuli, Jin, L. and Gong, Q. (2017), "Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept", Int. J. Geomech., 17(2). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729.
- Luo, C., Wang, L., Xie, Y. and Chen, B. (2022a), "A new conjugate gradient method for moving force identification of vehicle-bridge system", J. Vib. Eng. Technol., 12(1), 19-36. https://doi.org/10.1007/s42417-022-00824-1.
- Luo, Z., Wang, H. and Li, S. (2022b), "Prediction of international roughness index based on stacking fusion model", Sustainab., 14(12), 6949. https://doi.org/10.3390/su14126949.
- Meyerhof, G.G. (1963), "Some recent research on the bearing capacity of foundations", Can. Geotech. J., 1(1), 16-26. https://doi.org/10.1139/t63-003.
- Mirjalili, S., Mirjalili, S.M. and Hatamlou, A. (2016), "Multi-verse optimizer: A nature-inspired algorithm for global optimization", Neural Comput. Applicat., 27(2), 495-513. https://doi.org/10.1007/s00521-015-1870-7.
- Moayedi, H. and Dehrashid, A.A. (2023), "A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping", Environ. Sci. Pollut. Res., 30(34), 82964-82989. https://doi.org/10.1007/s11356-023-28133-4.
- Moayedi, H. and Hayati, S. (2018), "Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods", Appl. Soft Comput., 66, 208-219. https://doi.org/10.1016/j.asoc.2018.02.027.
- Muhs, H. (1974), "Inclined load tests on shallow strip footings", 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, Russia, January.
- Muhs, H. and Welss, K. (1971), "Untersuchung von Grenztragfahigkeit unel Setzungsverhaeten flachgegrundeter Einzelfundamente im ungleinchformigen nichbindigen", Boden Mitteilungen der Degebo an der Technischen Universitat, Berlin, Germany.
- Muhs, H., Elmiger, R. and Weiss, K. (1969), Sohlreibung und Grenztragfahigkeit unter lotrecht und schrag belasteten Einzelfundamenten; mit 128 Bildern und 13 Zahlentafeln, Ernst.
- Padmini, D., Ilamparuthi, K. and Sudheer, K.P. (2008), "Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models", Comput. Geotech., 35(1), 33-46. https://doi.org/10.1016/j.compgeo.2007.03.001.
- Perloff, W.H. and Baron, W. (1976), Soil Mechanics. Principles and Applications, Ronald press company, New York, NY, USA.
- Picton, P. (1994), Introduction to Neural Networks, Springer International Publishing, Cham, Switzerland.
- Prandtl, L. (1921), "Ueber die Eindringungsfestigkeit (Harte) plastischer Korper", J. Appl. Math. Mech., 1921, 1.
- Rahman, M.S., Wang, J., Deng, W. and Carter, J.P. (2001), "A neural network model for the uplift capacity of suction caissons", Comput. Geotech., 28(4), 269-287. https://doi.org/10.1016/S0266-352X(00)00033-1.
- Rajabioun, R. (2011), "Cuckoo optimization algorithm", Appl. Soft Comput., 11(8), 5508-5518. https://doi.org/10.1016/j.asoc.2011.05.008.
- Rao, R., Venkata, S., Vimal, J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015.
- Ray, R., Kumar, D., Samui, P., Roy, L.B., Goh, A.T.C. and Zhang, W. (2021), "Application of soft computing techniques for shallow foundation reliability in geotechnical engineering", Geosci. Front., 12(1), 375-383. https://doi.org/10.1016/j.gsf.2020.05.003.
- Ray, R., Samui, P. and Roy, L.B. (2023), "Reliability analysis of a shallow foundation on clayey soil based on settlement criteria", J. Curr. Sci. Technol., 13(1), 91-106.
- Reeves, C.R. (1993), Modern Heuristic Techniques for Combinatorial Problems, John Wiley & Sons Inc., Hoboken, NJ, USA.
- Reissner, H. (1924), "Zum erddruckproblem", Proceedings of the 1st International Conference for Applied Mechanics, Delft, The Netherlands, April.
- Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355.
- Shahin, M.A., Jaksa, M.B., Maier, H.R. (2000), "Predicting the settlement of shallow foundations on cohesionless soils using back-propagation neural networks", Research Report No. R 167; Department of Civil and Environmental Engineering, University of Adelaide, Adelaide, Australia.
- Shahin, M.A., Jaksa, M.B., Maier, H.R. (2009), "Recent advances and future challenges for artificial neural systems in geotechnical engineering applications", Adv. Artif. Neural Syst., 2009, 1.
- Shu, Z., Ning, B., Chen, J., Li, Z., He, M., Luo, J., ... and Dong, H. (2023), "Reinforced moment-resisting glulam bolted connection with coupled long steel rod with screwheads for modern timber frame structures", Earthq. Eng. Struct. Dyn., 52(4), 845-864. https://doi.org/10.1002/eqe.3789.
- Sivakugan, N., Eckersley, J. and Li, H. (1998), "Settlement predictions using neural networks", Aust. Civil Eng. Trans., 40, 49-52.
- Steenfelt, J.S. (1977), "Scale effect on bearing capacity factor nγ", The 9th ICSMFE, Tokyo, Japan, July.
- Su, Y., Wang, J., Li, D., Wang, X., Hu, L., Yao, Y. and Kang, Y. (2023), "End-to-end deep learning model for underground utilities localization using GPR", Automat. Constr., 149, 104776. https://doi.org/10.1016/j.autcon.2023.104776.
- Sun, Y., Dai, H., Moayedi, H., Nguyen Le, B., Muhammad Adnan, R. (2024), "Predicting steady-state biogas production from waste using advanced machine learning-metaheuristic approaches", Fuel, 355, 129493. https://doi.org/10.1016/j.fuel.2023.129493.
- Tahwia, A.M., Heniegal, A., Elgamal, M.S., Tayeh, B.A. (2021), "The prediction of compressive strength and non-destructive tests of sustainable concrete by using artificial neural networks", Comput. Concrete, 27(1), 21-28. https://doi.org/10.12989/cac.2021.27.1.021.
- Taleshi, A.A. and Hashemi, H. (2021), "Estimation of seismic attenuation in the Kangan formation from walkaway VSP data", J. Seismic Expl., 30(3), 201-210.
- Tatsuoka, F. (1991), "Progressive failure and particle size effect in bearing capacity of a footing on sand", Proceedings of ASCE Geotechnical Engineering Congress, Boulder, CO, USA, June.
- Taylor, R.N. (2018), Geotechnical Centrifuge Technology, CRC Press, Boca Raton, FL, USA.
- Teh, C.I., Wong, K.S., Goh, A.T.C. and Jaritngam, S. (1997), "Prediction of pile capacity using neural networks", J. Comput. Civil Eng., 11(2), 129-138. https://doi.org/10.1061/(ASCE)0887-3801(1997)11:2(129).
- Tejchman, J. and Herle, I. (1999), "A "class A" prediction of the bearing capacity of plane strain footings on sand", Soils Found., 39(5), 47-60. https://doi.org/10.3208/sandf.39.5_47.
- Terzaghi, K. (1943), Theoretical Soil Mechanics, John Wiley & Sons Inc., Hoboken, NJ, USA.
- Tian, L., Li, M., Li, L., Li, D. and Bai, C. (2023), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin Wall. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219.
- Vesic, A.S. (1973), "Analysis of ultimate loads of shallow foundations", J. Soil Mech. Found. Div., 99(1), 45-73. https://doi.org/10.1061/JSFEAQ.0001846.
- Wang, H., Zhang, X. and Jiang, S. (2022a), "A laboratory and field universal estimation method for tire-pavement interaction noise (TPIN) based on 3D image technology", Sustainab., 14(19), 12066. https://doi.org/10.3390/su141912066.
- Wang, W., Li, D.Q., Tang, X.S. and Du, W. (2023a), "Seismic fragility and demand hazard analyses for earth slopes incorporating soil property variability", Soil Dyn. Earthq. Eng., 173, 108088. https://doi.org/10.1016/j.soildyn.2023.108088.
- Wang, Y., Lou, M., Wang, Y., Fan, C., Tian, C. and Qi, X. (2023b), "Experimental investigation of the effect of rotation rate and current speed on the dynamic response of riserless rotating drill string", Ocean Eng., 280, 114542. https://doi.org/10.1016/j.oceaneng.2023.114542.
- Wang, Y., Lou, M., Wang, Y., Wu, W. and Yang, F. (2022b), "Stochastic failure analysis of reinforced thermoplastic pipes under axial loading and internal pressure", Chin. Ocean Eng., 36(4), 614-628. https://doi.org/10.1007/s13344-022-0054-3.
- Weiss, K. (1970), Der Einfluss der Fundamentform auf die Grenztragfahigkeit flachgegrundeter Fundamente, Untersuchungen ausgef.... von Klaus Weiss: mit 14 Zahlentaf. Ernst.
- Zhang, W., Gu, X., Hong, L., Han, L. and Wang, L. (2023), "Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges", Appl. Soft Comput., 136, 110066. https://doi.org/10.1016/j.asoc.2023.110066.
- Zhang, W., Liu, X., Huang, Y. and Tong, M.N. (2022), "Reliability-based analysis of the flexural strength of concrete beams reinforced with hybrid BFRP and steel rebars", Arch. Civil Mech. Eng., 22(4), 171. https://doi.org/10.1007/s43452-022-00493-7.
- Zhang, X., Wang, S., Liu, H., Cui, J., Liu, C. and Meng, X. (2024), "Assessing the impact of inertial load on the buckling behavior of piles with large slenderness ratios in liquefiable deposits", Soil Dyn. Earthq. Eng., 176, 108322. https://doi.org/10.1016/j.soildyn.2023.108322.
- Zhao, Y., Gor, M., Voronkova, D.K., Gholizadeh Touchaei, H., Moayedi, H. and Nguyen Le, B. (2023), "An optimized ANFIS model for predicting pile pullout resistance", Steel Compos. Struct., 48(2), 179-190. https://doi.org/10.12989/scs.2023.48.2.179.
- Zhou, X., Lu, D., Zhang, Y., Du, X. and Rabczuk, T. (2022), A"n open-source unconstrained stress updating algorithm for the modified cam-clay model", Comput. Method. Appl. Mech. Eng., 390, 114356. https://doi.org/10.1016/j.cma.2021.114356.