DOI QR코드

DOI QR Code

Phylogenetic Classification and Evaluation of Agronomic Traits of Korean Wheat Landrace (Triticum aestivum L.)

국내 재래종 밀 계통 분리와 농업형질 특성 평가

  • Yumi Lee (Department of GreenBio Scienc, Gyeongsang National University) ;
  • Sejin Oh (Department of GreenBio Scienc, Gyeongsang National University) ;
  • Seong-Wook Kang (Department of GreenBio Scienc, Gyeongsang National University) ;
  • Chang-Hyun Choi (National Institute of Crop Science, Rural Development Administration) ;
  • Jongtae Lee (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Seong-Woo Cho (Department of Smart Agro-Industry, Gyeongsang National University)
  • 이유미 (경상국립대학교) ;
  • 오세진 (경상국립대학교) ;
  • 강성욱 (경상국립대학교) ;
  • 최창현 (국립식량과학원) ;
  • 이종태 (경상남도 농업기술원) ;
  • 조성우 (경상국립대학교)
  • Received : 2024.04.15
  • Accepted : 2024.05.10
  • Published : 2024.06.01

Abstract

This study was conducted to evaluate agronomic traits and classify phylogenetic characteristics of Korean wheat landraces (KWLs) collected in Gyeongnam province. We used the squash method for chromosome observation, image analysis to examine seed characteristics, and genotyping using commercial single-nucleotide polymorphism chips to construct a phylogenetic tree. All KWLs contained 42 chromosomes and two pairs of microsatellites as observed in Keumgang, a Korean wheat cultivar. All KWLs showed smaller seed traits compared with those of Keumgang, although KWL-3 had a larger embryo length than that of Keumgang. Among agronomic traits compared with those of Keumgang, all KWLs had a late heading date and ripening period except for KWL-3, which showed the smallest culm and spike length. KWL-1 had the lowest tiller, highest floret, and grain number. All KWLs showed a lower thousand grain weight than that of Keumgang because of their smaller seeds. In the variation of variety and area, the heading date, ripening period, tiller number, and floret number were affected by the cultivation area, whereas the culm length, spike length, and 1000 grain weight were affected by the variety. Correlation distribution analysis showed differences in agronomic traits according to the cultivation area, and the heading date was positively correlated with the culm length and floret number in three cultivation areas. Principal component analysis explained that the heading date had a positive relationship with the ripening period and floret number and a negative relationship with the tiller number. Principal component analysis also revealed that all KWLs had a lower thousand grain weight than that of Keumgang. Phylogenetic tree showed that KWL-1 was near KWL-3, while KWL-2 was near KWL-4. All KWLs were genetically near the Korean wheat cultivars milsung and saeol, whereas they were genetically far from the Korean wheat cultivars goso and olgrue.

식물유전자원의 중요성이 인식되면서 지속적으로 재배되어 온 재래종에 대한 유전학적 가치가 인정되고 있다. 이 연구에서는 경남에서 수집한 국내 재래종 밀에 대한 염색체와 이삭형태 관찰, 종자특성과 농업형질 평가, 및 국내 밀 품종과의 연관관계를 확인하였다. 국내 재래종 밀 4계통의 염색체는 42개로 확인되었으며, 이삭의 형태와 길이는 국내 품종인 금강밀과 차이를 보였다. 국내 재래종 밀 계통의 종실특성은 전반적으로 금강밀의 종실에 비하여 작은 면적, 너비, 및 길이를 보였으나, KWL-3의 배의 길이는 다른 재래종 밀뿐만 아니라 금강밀 종자의 배 길이보다도 길었다. 국내 재래종 밀 계통은 금강밀에 비하여 늦은 출수기와 성숙기를 보였다. 특히, KWL-3는 짧은 간장, KWL-2는 짧은 수장, KWL-1은 적은 분얼수를 보인 반면에 영화수와 일수립수는 금강에 비하여 재래종 밀 모든 계통에서 높았다. 이러한 이유는 금강밀에 비하여 높은 재래종 밀 계통의 임실률이 영향을 미친 것으로 판단된다. 하지만 재래종 밀 계통의 종실면적, 너비, 길이, 및 두께가 작아 금강밀보다 낮은 천립중을 보였다. 향후, 종실특성의 향상은 재래종 밀 계통에 필수 조건으로 생각하며, 금강밀에 비하여 높은 영화수와 일수립수 및 임실률은 유용한 유전인자로 활용될 수 있을 것이다.

Keywords

References

  1. Alghabari, F., Z. H. Shah, and H. J. Seo. 2023. Physio-Chemical and Agronomic-Based Characterization of Synthetic Hexaploid Wheat Germplasm under Field Imposed Conditions of Drought and Heat Stress. Agronomy 13(2) : 458. 
  2. Cha, J. K., D. J. Shin, H. J. Park, Y. H. Kwon, S. M. Lee, J. M. Ko, and J. H. Lee. 2022. Effects of High-Molecular-Weight Glutenin Subunits and Agronomic Traits on Bread Wheat Quality Parameters. Korean Journal of Crop Science, 67(2) : 111-120. 
  3. Cho, S. W., Y. Moritama, T. Ishii, M. Kishii, H. Tanaka, A. E. Eltayeb, and H. Tsujimoto. 2011. Homology of two alien chromosomes during meiosis in wheat. Chromosome Science 14 : 45-52. 
  4. Choi, Y. M., M. C. Lee, N. Y. Ro, S. K. Lee, J. K. Gwag, and M. S. Yoon. 2014. Morphological characteristics and SSR pro-filings of soybean landraces of Korea. Korean Journal of Breeding 46 : 353-363. 
  5. Gill, B. S. 2015. Wheat Chromosome Analysis. In: Ogihara, Y., Takumi, S., Handa, H. (eds) Advances in Wheat Genetics: From Genome to Field. Springer, Tokyo. 
  6. Guo, Z., Y. Zhao, M. S. Roder, J. C. Reif, M. W. Ganal, D. Chen, and T. Schnurbusch. 2018. Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat. Scientific Reports 8 : 14435. 
  7. Han, O. K., J. Abe, and Y. Shimamoto. 1999. Genetic Diversity of Soybean Landraces in Korea. The Korean Journal of Crop Science 44(3) : 256-262. 
  8. Hoban, S., M. W. Bruford, W. C. Funk, P. Galbusera, M. P. Griffith, C. E. Grueber, M. Heuertz, M. E. Hunter, C. Hvilsom, B. K. Stroil, F. Kershaw, C. K. Khoury, L. Laikre, M. L. Fernandes, A. J. Macdonald, J. Mergeay, M. Meek, C. Mittan, T. A. Mukassabi, D. O. Brien, R. Ogden, C. P. Silva, U. Ramakrishnan, G. Segelbacher, R. E. Shaw, P. S. Gulve, N. Velickovic, and C. Vernesi. 2021. Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. Bioscience 71(9) : 964-976. 
  9. Hoban, S., M. W. Bruford, J.M. Silva, W. C. Funk, R. Frankham, M. J. Gill, C. E. Grueber, M. Heuertz, M. E. Hunter, F. Kershaw, R. C. Lacy, C. Lees, M.L. Fernandes, A. J. Macdonald, A. M. Yanes, P. J. K. McGowan, M. H. Meek, J. Mergeay, K. L. Millette, C. S. M. Moreau, L. M. Navarro, D. O. Brien, R. Ogden, G. Segelbacher, I. P. Vinas, C. Vernesi, and L. Laikre. 2023. Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. Conservation Genetics 24(2) : 181-191. 
  10. Jeon, Y. A., S. H. Kwak, Y. M. Choi, H. M. Yoon, M. J. Shin, H. S. Cheon, S. E. Choi, Y. J. Mo, C. S. Kang, and Kebede Taye Desta. 2023. Multivariate Characterization of Common and Durum Wheat Collections Grown in Korea using Agro-Morphological Traits. The Korean Journal of Crop Science 68(4) : 343-370. 
  11. Kim, S. D., Y. H. Kim, E. H. Hong, and E. H. Park. 1993. Seed characteristics of black soybean collections in Korea. The Korean Journal of Crop Science 38(5) : 437-441. 
  12. Lee, K. J., J. R. Lee, G.A. Lee, H. S. Lee, S. I. Kwon, Y. G. Cho, Y. H. Cho, K. H. Ma, S. Y. Lee, and J. W. Chung. 2015a. Genetic Diversity Among Korean Rice Landraces (Oryza sativa L.) Based on Characters and SSR Markers. Plant Breeding and Biotechnology 3 : 216-225. 
  13. Lee, S. K., Y. M. Choi, D. Y. Hyun, M. C. Lee, S. J. Oh, H. C. Ko, O. S. Heo, and Y. J. Jeong. 2015b. Evaluation of East Asian Landrace Wheat Revealed by High Molecular Weight Glutenin and Maturity Period. Korean Journal of Breeding Science 47(3) : 264-275. 
  14. Li, F. P., Y. S Lee, S. W. Kwon, G. Li, and Y. J. Park. 2014. Analysis of genetic diversity and trait correlations among Korean landrace rice (Oryza sativa L.). Genetics and Mole-Cular Research : GMR 13(3) : 6316-6331. 
  15. Makebe, A., H. Shimelis, and J. Mashilo. 2024. Selection of M5 mutant lines of wheat (Triticum aestivum L.) for agronomic traits and biomass allocation under drought stress and non-stressed conditions. Frontiers in Plant Science 15 : 1314014. 
  16. Martinez-Perez, E., P. Shaw, S. Reader, L. Aragon-Alcaide, T. Miller, and G. Moore. 1999. Homologous chromosome pairing in wheat. Journal of Cell Science 112(Pt 11) : 1761-1769. 
  17. Meseka, S., A. Menkir, and K. Obeng-Antwi. 2014. Exploitation of beneficial alleles from maize (Zea mays L.) landraces to enhance performance of an elite variety in water stress environments. Euphytica 201 : 149-160. 
  18. Park, S. Y., S. G. Jang, J. H. Lee, and S. W. Kwon. 2019. Evaluation of Mesocotyl Elongation Ability of Korean Rice Landrace (Oryza sativa L.). Korean Journal of Breeding Science 51(4) : 351-356. 
  19. Rural Development Administration (RDA). 2012. Standard of research and analysis for agricultural technology. 
  20. Schmutz, J., P. McClean, S. Mamidi, G. A. Wu, S. B. Cannon, J. Grimwood, J. Jenkins, S. Shu, Q. Song, C. Chavarro, M. T. Torres, V. Geffroy, S. M. Moghaddam, D. Gao, B. Abernathy, K. Barry, M. Blair, M. A. Brick, M. Chovatia, P. Gepts, D. M. Goodstein, M. Gonzales, U. Hellsten, D. Hyten, G. Jia, J. D. Kelly, D. Kudrna, R. ee, M. M. S. Richard, P. N. Miklas, J. M. Osorno, J. Rodrigues, V. Thareau, C. A. Urrea. M. Wang, Y. Yu, M. Zhang, R. A. Wing, P. B. Cregan, D. S. Rokhsar, and S. A. Jackson. 2014. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet. 46 : 707-713. 
  21. Sears, E. R. 1948. The Cytology and Genetics of the Wheats and their Relatives. Advances in Genetics 2 : 239-270. 
  22. Shahwani, A. R. 2014. Influence of Seed size on Germinability and Grain yield of Wheat (Triticum aestivum L.) Varieties. Journal of Natural Sciences Research 4 : 147-155.
  23. United Nations, https://www.un.org/en/observances/biological-diversity-day/convention. Accessed 1 March 2024. 
  24. van de Wouw, M., C. Kik, T. van Hintum, R. van Treuren, and B. Visser. 2010. Genetic erosion in crops: concept, research results and challenges. Plant Genetic Resources 8(1) : 1-15. 
  25. Yadav, O. P. and F. R. Bidinger. 2007. Utilization, diversification and improvement of landraces for enhancing pearl millet productivity in arid environments. Annals of Arid Zone 46 : 49-57. 
  26. Zhou, H., A. B. Riche, M. J. Hawkesford, W. R. Whalley, B. S. Atkinson, C. J. Sturrock, and S. J. Mooney. 2021. Determination of wheat spike and spikelet architecture and grain traits using X-ray Computed Tomography imaging. Plant Methods 17 : 26.