DOI QR코드

DOI QR Code

Phenotypic Diversity among 575 Cultivated Soybean Landraces Collected from Different Provinces in Korea: A Multivariate Analysis

  • Kebede Taye Desta (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Yu-Mi Choi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Young-ah Jeon (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Myoung-Jae Shin (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hye-myeong Yoon (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Wang XiaoHan (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hyeon-seok Oh (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Young-Wan Na (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ho-cheol Ko (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Na-young Ro (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • JungYoon Yi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration)
  • 투고 : 2024.03.05
  • 심사 : 2024.04.01
  • 발행 : 2024.06.01

초록

This study investigated 575 cultivated soybean landraces from different provinces in Korea, using 17 key agromorphological traits. The studied soybeans showed wide variations in both qualitative and quantitative traits, signifying the existence of genetic diversity. The standardized Shannon-Weaver index (H') ranged from 0.3 to 1.0, with seed-related traits having an H' value higher than 0.7. Similarly, quantitative traits showed significant variation, with the coefficient of variation ranging from 7.2% for days to maturity (DM) to 62.3% for the number of pods per plant (PPP). In terms of province, the Gyeongsangbuk-do and Gyeongsangnam-do accessions differed from the other accessions, with higher proportions of green and yellow seed coats and lower proportion of black hilums. Gyeongsangnam-do accessions also showed early maturation and flowering but had the lowest average one-hundred seeds weight (HSW). In contrast, Jeollanam-do accessions flowered and matured late but had the highest average seed weight per plant (SWPP). Hierarchical cluster analysis grouped the soybeans into 12 clusters, and further statistical analysis showed significant variations in all quantitative traits (p < 0.05). Principal component analysis grouped the accessions based on the clusters. DM, PPP, HSW, and SWPP were identified as major contributors to the observed variance along the axes of the first two principal components. Correlation analysis revealed significant associations between maturity and yield-related traits. Based on their relative performance, 37 promising accessions were identified. Overall, this study highlights the diversity of recently cultivated Korean soybean landraces and provides opportunities for future metabolomic and genomic studies.

키워드

과제정보

This research was funded by the Research Program for Agricultural Science and Technology Development (Project No. PJ01604501) of the National Institute of Agricultural Sciences, Rural Development Administration (Jeonju, Korea).

참고문헌

  1. Aper, J., H. De Clercq, and J. Baert. 2016. Agronomic Characteristics of Early-Maturing Soybean and Implications for Breeding in Belgium. Plant Genetic Resources: Characterisation and Utilisation 14 (2) : 142-148.
  2. Chen, L., Y. Fang, X. Li, K. Zeng, H. Chen, H. Zhang, H. Yang, D. Cao, Q. Hao, S. Yuan, C. Zhang, W. Guo, S. Chen, Z. Yang, Z. Shan, X. Zhang, D. Qiu, Y. Zhan, and X. A. Zhou. 2020. Identification of Soybean Drought-Tolerant Genotypes and Loci Correlated with Agronomic Traits Contributes New Candidate Genes for Breeding. Plant Molecular Biology 102 (1-2) : 109-122.
  3. Cho, G.-T., M.-S., Yoon, J. Lee, H.-J. Baek. J.-H. Kang, T.-S. Kim, and N.-C. Paek. 2008. Development of a Core Set of Korean Soybean Landraces [Glycine Max(L.) Merr.]. J. Crop Sci. Biotech 11 : 157-162.
  4. Choi, Y.-M., H. Yoon, M.-J. Shin, Y. Lee, S. Lee, W. Xiaohan, and K.T. Desta. 2021. Variations of yield components and anthocyanin contents in Soritae and Yakkong black soybean landraces collected from different area. Korean J. Plant Res. 34 : 542-554.
  5. Chowdhury, A.K., P. Srinvies, P. Tongpamnak, and P. Saksoong. 2001. Genetic Diversity Based on Morphology and RAPD Analysis in Vegetable Soybean. Korean J. Crop Sci. 46 : 112-120.
  6. Desta, K.T., O. S. Hur, S. Lee, H. Yoon, M. Shin, J. Yi, Y. Lee, N. Young, X. Wang, and Y.-M. Choi. 2022. Origin and Seed Coat Color Differently Affect the Concentrations of Metabolites and Antioxidant Activities in Soybean (Glycine Max (L.) Merrill) Seeds. Food Chemistry 381 : 132249.
  7. Fang, C., H. Du, L. Wang, B. Liu, and F. Kong. 2023. Mechanisms Underlying Key Agronomic Traits and Implications for Molecular Breeding in Soybean. Journal of Genetics and Genomics https://doi.org/10.1016/j.jgg.2023.09.004.
  8. Food and Agriculture Organization (FAO). 2022. http://www.fao.org/faostat/en/#data/QCL/visualize (Accessed on February 12, 2024).
  9. Friedman, M. and D. L. Brandon. 2001. Nutritional and Health Benefits of Soy Proteins. J. Agric. Food Chem. 49(3) : 1069-1086.
  10. Hwang, T. Y., B. S. Gwak, J. Sung, and H. S. Kim. 2020. Genetic Diversity Patterns and Discrimination of 172 Korean Soybean (Glycine max (L.) Merrill) Varieties Based on SSR Analysis. Agriculture (Switzerland) 10(3) : 77.
  11. Jang, S. J., S. J. Park, K. H. Park, H. L. Song, Y. G. Cho, S. K. Jong, J. H. Kang, and H. S. Kim. 2009. Genetic diversity of Korean elite soybean cultivars including certified cultivars based on SSR markers. Korean J. Crop Sci. 54 : 231-240.
  12. Jean, M., E. Cober, L. O'Donoughue, I. Rajcan, and F. Belzile. 2021. Improvement of Key Agronomical Traits in Soybean through Genomic Prediction of Superior Crosses. Crop Science 61(6) : 3908-3918.
  13. Kim, J. M., J. S. Seo, J. W. Lee, J. I. Lyu, J. Ryu, S. H. Eom, B. K. Ha, and S. J. Kwon. 2023b. QTL Mapping Reveals Key Factors Related to the Isoflavone Contents and Agronomic Traits of Soybean (Glycine Max). BMC Plant Biol. 23(1) : 1-18.
  14. Kim, J.-B., K. J. Lee, D. S. Kim, S. H. Kim, H. S. Song, and S.-Y. Kang. 2016. An Improved Soybean Cultivar 'Wonhyun' with Cooking Rice by Mutation Breeding. Korean Journal of Breeding Science 48(1) : 60-65.
  15. Kim, M. S., T. Lee, J. Baek, J. H. Kim, C. Kim, and S. C. Jeong. 2021. Genome Assembly of the Popular Korean Soybean Cultivar Hwangkeum. G3 Genes, Genomes, Genetics 11(10).
  16. Kim, S. H., P. Subramanian, Y. W. Na, B. S. Hahn, and Y. Kim. 2023a. RDA-Genebank and Digital Phenotyping for Next-Generation Research on Plant Genetic Resources. Plants 12(15) : 1-11.
  17. Kumawat, G., S. Maranna, S. Gupta, R. Tripathi, N. Agrawal, V. Singh, V. Rajesh, S. Chandra, V. Kamble, V. Nataraj, A. Bharti, M. P. Sharma, P. V. Jadhav, PM. B. Ratnaparkhe, G. K. Satpute, and V. S. Bhatia. 2021. Identification of Novel Genetic Sources for Agronomic and Quality Traits in Soybean Using Multi-Trait Allele Specific Genic Marker Assays. Journal of Plant Biochemistry and Biotechnology 30(1) : 160-171.
  18. La, T., E. Large, E. Taliercio, Q. Song, J. D. Gillman, D. Xu, H. T. Nguyen, G. Shannon, and A. Scaboo. 2019. Characterization of Select Wild Soybean Accessions in the USDA Germplasm Collection for Seed Composition and Agronomic Traits. Crop Science 59(1) : 233-251.
  19. Lee, G.-A., Y.-M. Choi, J.-Y. Yi, J.-W. Chung, M.-C. Lee, K.-H. Ma, S. Lee, J.-W. Cho, and J.-R. Lee. 2014. Genetic Diversity and Population Structure of Korean Soybean Collection Using 75 Microsatellite Markers. Korean Journal Crop Science 59(4) : 492-497.
  20. Lee, J. Y., H. J. Choi, C. K. Son, J. S. Bae, H. Jo, and J. D. Lee. 2021. Genetic Diversity of Black Soybean Germplasms with Green Cotyledons Based on Agronomic Traits and Cotyledon Pigments. Korean Journal of Breeding Science 53(2) : 127-139.
  21. Lee, J. Y., H. Jo, H., C. K. Son, J. S. Bae, and J. D. Lee. 2023. Genetic Diversity of Korean Black Soybean (Glycine max L.) Germplasms with Green Cotyledons Based on Seed Composition Traits. Agriculture (Switzerland) 13(2) : 406.
  22. Lee, K. J., D. Y. Baek, G. A. Lee, G. T. Cho, Y. S. So, J. R. Lee, K. H. Ma., J. W. Chung, and D. Y. Hyun. 2020. Phytochemicals and Antioxidant Activity of Korean Black Soybean (Glycine max L.) Landraces. Antioxidants 9(3) : 1-12.
  23. Li, Z. and R. L. Nelson. 2001. Genetic Diversity among Soybean Accessions from Three Countries Measured by RAPDs. Crop Science 41(4) : 1337-1347.
  24. Maxted, N., D. Hunter, and R. Ortiz Rios. 2020. Genetic Diversity Measurement. In: Plant Genetic Conservation. Cambridge University Press. pp. 114-132.
  25. Modgil, R., B. Tanwar, A. Goyal, and V. Kumar. 2021. Soybean (Glycine max). In: Tanwar, B., Goyal, A. (eds) Oilseeds: Health Attributes and Food Applications. Springer, Singapore.
  26. Nair, R. M., V. N. Boddepalli, M. R. Yan, V. Kumar, B. Gill, R. S. Pan, C. Wang, G. L. Hartman, S. R. Silva, and P. Somta. 2023. Global Status of Vegetable Soybean. Plants 12(3) : 609.
  27. Park, H.-J., W.-Y. Han, K.-W. Oh, H.-T. Kim, S.-O. Shin, B.-W. Lee, J.-M. Ko, and I. Y. Baek. 2014. Growth and Yield Components Responses to Delayed Planting of Soybean in Southern Region of Korea. Korean Journal Crop Science 59(4) : 483-491.
  28. Park, M. R., M.-J. Seo, Y.-Y. Lee, and C.-H. Park. 2016. Selection of Useful Germplasm Based on the Variation Analysis of Growth and Seed Quality of Soybean Germplasms Grown at Two Different Latitudes. Plant Breeding and Biotechnology 4(4) : 462-474.
  29. Qiao, Y., K. Zhang, Z. Zhang, C. Zhang, Y. Sun, and F. Feng. 2022. Fermented Soybean Foods: A Review of Their Functional Components, Mechanism of Action and Factors Influencing Their Health Benefits. Food Research International 158 : 111575.
  30. Qin, P., T. Wang, and Y. A. Luo. 2022. Review on Plant-Based Proteins from Soybean: Health Benefits and Soy Product Development. Journal Agriculture Food Research 7 : 100265
  31. Rabara, R. C., M. C. Ferrer, C. L. Diaz, Ma C. V. Newingham, and G. O. Romero. 2014. Phenotypic diversity of farmers' traditional rice varieties in the Philippines. Agronomy 4 : 217-241.
  32. Rahman, S. U., E. McCoy, G. Raza, Z. Ali, S. Mansoor, and I. Amin. 2023. Improvement of Soybean; A Way Forward Transition from Genetic Engineering to New Plant Breeding Technologies. Molecular Biotechnology 65(2) : 162-180.
  33. Rani, R., G. Raza, H. Ashfaq, M. Rizwan, H. Shimelis, M. H. Tung, and M. Arif. 2023. Analysis of Genotype × Environment Interactions for Agronomic Traits of Soybean (Glycine Max [L.] Merr.) Using Association Mapping. Frontiers in Genetics 13 : 1-16.
  34. Ravelombola, W., J. Qin, A. Shi, Q. Song, J. Yuan, F. Wang, P. Chen, L. Yan, Y. Feng, T. Zhao, Y. Meng, K. Guan, C. Yang, and M. Zhang. 2021. Genome-Wide Association Study and Genomic Selection for Yield and Related Traits in Soybean. PLoS One 16(8) : 1-21.
  35. Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27 : 379-423.
  36. Shilpashree, N., S. N. Devi, D. C. Manjunathagowda, A. Muddappa, S. A. M. Abdelmohsen, N. Tamam, H. O. Elansary, T. K. Zin El-Abedin, A. M. M. Abdelbacki, and V. Janhavi. 2021. Morphological Characterization, Variability and Diversity among Vegetable Soybean (Glycine Max L.) Genotypes. Plants 10(4) : 1-11.
  37. Shrestha, P., M, P. Pandey, K. H. Dhakal, S. K. Ghimire, S. B. Thapa, and B. P. Kandel. 2023. Morphological Characterization and Evaluation of Soybean Genotypes under Rainfed Ecosystem of Nepal. Journal Agriculture Food Research 11 : 100526
  38. Toomer, O. T., E. O. Oviedo, M. Ali, D. Patino, M. Joseph, M, Frinsko, T. Vu, P. Maharjan, B. Fallen, and R. Mian. 2023. Current Agronomic Practices, Harvest & Post-Harvest Processing of Soybeans (Glycine Max)-A Review. Agronomy 13(2) : 427.
  39. Truong, N. T., K. Van, M.-Y. Kim, and S.-H. Lee. 2006. Genotypic Variation in Flowering and Maturing Periods and Their Relations with Plant Yield and Yield Components in Soybean. Korean J. Crop Sci. 51 : 163-168.
  40. Ullah, A., Z. Akram, S. I. Malik, and K. S. U. Khan. 2021. Assessment of Phenotypic and Molecular Diversity in Soybean [Glycine Max (L.) Merr.] Germplasm Using Morpho-Biochemical Attributes and SSR Markers. Genetic Resources Crop Evolution 68(7) : 2827-2847.
  41. Valliyodan, B., A. V. Brown, J. Wang, G. Patil, Y. Liu, P. I. Otyama, R. T. Nelson, T. Vuong, Q. Song, T. A. Musket, R. Wagner, P. Marri, S. Reddy, A. Sessions, X. Wu, D. Grant, P. E. Bayer, M. Roorkiwal, R. K. Varshney, X. Liu, D. Edwards, D. Xu, T. Joshi, S. B. Cannon, and H. T. 2021. Nguyen. Genetic Variation among 481 Diverse Soybean Accessions, Inferred from Genomic Re-Sequencing. Scientific Data 8(1) : 1-9.
  42. Wang, L., Y. Guan, R. Guan, Y. Li, Y. Ma, Z. Dong, X. Liu, H. Zhang, Y. Zhang, Z. Liu, R. Chang, H. Xu, L. Li, F. Lin, W. Luan, Z. Yan, X. Ning, L. Zhu, Y. Cui, R. Piao, Y. Liu, P. Chen, and L. Qiu. 2006. Establishment of Chinese Soybean (Glycine Max) Core Collections with Agronomic Traits and SSR Markers. Euphytica 151(2) : 215-223.
  43. Wu, H. J., J. C. Deng, C. Q. Yang, J. Zhang, Q. Zhang, X. C. Wang, F. Yang, W. Y. Yang, and J. Liu. 2017. Metabolite Profiling of Isoflavones and Anthocyanins in Black Soybean [Glycine Max (L.) Merr.] Seeds by HPLC-MS and Geographical Differentiation Analysis in Southwest China. Analytical Methods 9(5) : 792-802.
  44. Xavier, A., R. Thapa, W. M. Muir, and K. M. Rainey. 2018. Population and Quantitative Genomic Properties of the USDA Soybean Germplasm Collection. Plant Genetic Resources: Characterisation and Utilisation 16(6) : 513-523.
  45. Yeater, K. M., M. B. Villamil, B. Glaz, and K. M. Yeater. 2018. Multivariate Methods for Agricultural Research. In Applied Statistics in Agricultural, Biological, and Environmental Sciences; Glaz, B., Yeater, K.M., Eds.; American Society of Agronomy, Inc.; Soil Science Society of America, Inc.; Crop Science Society of America, Inc.: Madison, WI, USA, 2018; ISBN 978-0-89118-359-4.
  46. Yoon, C. Y., S. Kim, J. Cho, and S. Kim. 2021a. Modeling the Impacts of Climate Change on Yields of Various Korean Soybean Sprout Cultivars. Agronomy 11(8) : 1-16.
  47. Yoon, H., K. T. Desta, M.-J. Shin, Y. Lee, S. Lee, X. Wang, Y.-M. Choi, and S. Lee. 2021b.Yearly Variation of Isoflavone Composition and Yield-Related Traits of 35 Korean Soybean Germplasm. Korean J. Breed Sci. 53 : 411-423.
  48. Yoon, M. S., J. W. Ahn, S. J. Park, H. J. BAek, N. K. Park, and Y. D Rho. 2000. Geographical pattern of morphological variations in Soybean germplasm. Korean J. Crop Sci. 45 : 267-271.
  49. Zatybekov, A., S. Abugalieva, S. Didorenko, Y. Gerasimova, I. Sidorik, S. Anuarbek, and Y. Turuspekov. 2017. GWAS of Agronomic Traits in Soybean Collection Included in Breeding Pool in Kazakhstan. BMC Plant Biol. 17 (Suppl 1):179.