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PERSISTENCE AND POINTWISE TOPOLOGICAL

STABILITY FOR CONTINUOUS MAPS OF TOPOLOGICAL

SPACES

Shuzhen Hua and Jiandong Yin

Abstract. In the paper, we prove that if a continuous map of a compact
uniform space is equicontinuous and pointwise topologically stable, then

it is persistent. We also show that if a sequence of uniformly expansive

continuous maps of a compact uniform space has a uniform limit and the
uniform shadowing property, then the limit is topologically stable. In ad-

dition, we introduce the concepts of shadowable points and topologically
stable points for a continuous map of a compact topological space and

obtain that every shadowable point of an expansive continuous map of a

compact topological space is topologically stable.

1. Introduction

For the sake of description, we denote the sets of natural numbers (including
0), positive integers, integers, positive real numbers and real numbers in the
paper by Z0, Z+, Z, R+ and R, respectively.

The concept of topological stability introduced by Walters in [24] for the stud-
ies of Anosov diffeomorphisms plays an important role in the general qualita-
tive theory of dynamical systems. In [25], Walters proved that every expansive
homeomorphism, which was introduced by Utz in [23], with the pseudo-orbit
shadowing property (shadowing property for brief) of a compact metric space
is topologically stable. Recently, Hua and Yin [11] introduced the notions of
expansivity, shadowing property and topological stability for continuous maps
of compact topological spaces from the viewpoint of open covers and extended
Walters’s stability theorem to continuous maps of disconnected compact topo-
logical spaces with the first axiom of countability. Variant basic notions of dy-
namical systems were studied from the pointwise viewpoint (see [4,14,17,21]).
For instance, Morales [21] introduced the concepts of shadowable points and
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proved that the shadowing property is equivalent to all points to be shadow-
able in the class of homeomorphisms of compact metric spaces; Koo et al. [17]
decomposed the topological stability (in the sense of Walters in [19,25,31]) into
the corresponding notion for points and showed that every shadowable point
of an expansive homeomorphism of a compact metric space is topologically
stable (also see [16]). Moreover, the notion of pointwise topologically stable
homeomorphism introduced in [17] is the pointwise version of topological sta-
bility (see [15] for the case of group actions). The latter implies the former
and the converse holds for certain homeomorphisms like the expansive ones of
compact manifolds (see [17]). In 2023, Koo and Lee [16] introduced the no-
tion of uniformly expansive point and proved that every uniformly expansive
and shadowable point of each homeomorphism on a compact metric space is
a topologically stable point. Arbieto and Rego [4] introduced the notion of
uniform shadowing property for a sequence of continuous maps and obtained
some sufficient conditions for the limit with positive entropy. Koo and Lee
[16] introduced the notion of uniformly expansiveness for a sequence of con-
tinuous maps and proved that if a sequence {fn}n∈Z+

of continuous self-maps
of a compact metric space X converges uniformly to a continuous self-map
f on X and {fn}n∈Z+

is uniformly expansive and has the uniform shadow-
ing property, then f is topologically stable. Lewowicz introduced the notion
of persistent homeomorphism in [20]. Furthermore, the authors in [8] proved
that every equicontinuous pointwise topologically stable homeomorphism of a
compact metric space is persistent and they also introduced some notions of
persistence (in the sense of Lewowicz [20]) for Borel probability measures with
respect to homeomorphisms of compact metric spaces.

The concept of uniform space was introduced by Weil in [28], which in-
cludes some important topological spaces such as metric and pseudo-metrizable
spaces, topological groups and function spaces. So far, some dynamical proper-
ties of continuous maps of uniform spaces have been studied by many authors.
For example, see [5, 30] for the works related to expansivity, [3, 6, 27] for sen-
sitivity and Devaney’s chaos, [1, 2, 30] for shadowing property and topological
stability, [7] for Spectral decomposition for topologically Anosov homeomor-
phism on noncompact and non-metrizable spaces.

Motivated by the idea of [10,30], many dynamical properties can be naturally
extended to uniform spaces. In this paper, inspired by [4, 8], we introduce the
concept of pointwise topologically stable continuous map of compact uniform
spaces and we prove that pointwise topological stability implies persistence for
equicontinuous continuous maps of compact uniform spaces with the first axiom
of countability (see Theorem 4.5). The proof relies on the notion of persistent
measure which has its own interest. Indeed, we decompose the persistence of a
continuous map into the corresponding property for Borel probability measures.
Furthermore, we extend some of the results of [8] to the case of continuous maps
of compact uniform spaces. Concretely, we prove that every almost persistent
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measure is persistent for an equicontinuous continuous map of a compact uni-
form space with the first axiom of countability (see Lemma 4.2). We also prove
that every equicontinuous pointwise persistent continuous map of a compact
uniform space with the first axiom of countability is persistent (see Lemma
4.3).

In addition, in this paper, we give the notions of uniform shadowing prop-
erty and uniform expansivity for a sequence of continuous maps of a compact
uniform space and study the dynamical behaviors of the limit of a sequence of
continuous maps with the expansivity and shadowing property. Concretely, let
X be a compact uniform space with the first axiom of countability, f : X → X
be a continuous map and {fn}n∈Z+

be a sequence of continuous self-maps of
X which converges uniformly to f , we prove that if {fn}n∈Z+

has the uniform
shadowing property, then so does f (see Lemma 5.1). We also prove that if
{fn}n∈Z+ is uniformly expansive, then f is expansive (see Lemma 5.2). Fur-
thermore, we show that if {fn}n∈Z+ is uniformly expansive and has the uniform
shadowing property, then f is topologically stable (see Theorem 5.7).

Besides, some concepts of dynamical systems, such as transitivity, minimality
andmixing, can be defined in the sense of topology, namely, we can restate these
concepts from the viewpoint of open covers but not distance. In this paper,
we introduce the concepts of shadowable point and topologically stable point
of continuous maps of compact topological spaces from the viewpoint of open
covers and prove that every shadowable point of an expansive continuous map
of a disconnected compact topological space with the first axiom of countability
is topologically stable (see Theorem 6.2).

The detailed arrangement of this paper is as follows: In Section 2, we re-
call some necessary notions of this paper and introduce the concept of persis-
tence for continuous maps of compact uniform spaces from the viewpoint of
entourages. In Section 3, we introduce the notion of persistence for Borel prob-
ability measures with respect to continuous maps of compact uniform spaces
and we prove that strong persistence for Borel probability measures and per-
sistence for continuous maps are equivalent. In Section 4, we prove that every
equicontinuous pointwise topologically stable continuous map of a compact
uniform space with the first axiom of countability is persistent. Moreover, we
obtain several general results related to persistence. In Section 5, we discuss
the shadowing property, expansivity and topological stability of the limit of a
sequence of continuous self-maps of a compact uniform space and prove that
if a sequence of continuous self-maps of a compact uniform space with the
first axiom of countability is uniformly expansive with the uniform shadow-
ing property, then the limit is topologically stable. In Section 6, we introduce
the concepts of shadowable point and topologically stable point for contin-
uous maps of compact topological spaces from the viewpoint of open covers
and prove that every shadowable point of an expansive continuous map of a
disconnected compact topological space with the first axiom of countability is
topologically stable.
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2. Preliminaries

In this section, we will restate some basic notions of uniform spaces and
dynamical systems.

2.1. Uniform space

Let X be a nonempty set and X × X = {(x, y) : x, y ∈ X} denote the
cartesian product of X with itself. Denote the diagonal of X × X by △X =
{(x, x) : x ∈ X}. For a subset U of X × X, the inverse of U is denoted by
U−1 = {(y, x) : (x, y) ∈ U} and U is called symmetric if U = U−1. Given two
subsets U and V of X ×X, the composition of U and V is defined as

U ◦ V = {(x, z) : there exists y ∈ X such that (x, y) ∈ U and (y, z) ∈ V }.

Use nU to denote

n times︷ ︸︸ ︷
U ◦ U ◦ · · · ◦ U . If U ⊆ X ×X contains the diagonal △X of

X×X, then we call U an entourage of the diagonal △X (usually, an entourage
for simplicity).

Definition 1 (see [29]). A uniformity U on a nonempty set X is a collection
of entourages of the diagonal satisfying the following conditions:

(1) U, V ∈ U ⇒ U ∩ V ∈ U ;
(2) U ∈ U , U ⊆ V ⇒ V ∈ U ;
(3) U ∈ U ⇒ V ◦ V ⊆ U for some V ∈ U ;
(4) U ∈ U ⇒ U−1 ∈ U .

Meanwhile, we call the pair (X, U) a uniform space. U is called separating if
∩U∈UU = △X , at the same time, we say that X is separating. A sub-collection
V of U is called a base of U if for every U ∈ U , there exists V ∈ V such
that V ⊆ U . Furthermore, the family of all open (resp., closed) symmetric
entourages in U is a base of U (see [13], Theorems 7 and 8). Obviously, if U is
separating, then ∩V ∈VV = △X for each base V of U .

Clearly, each base V of a uniformity U has the following properties:
(1) if U1, U2 ∈ U , then there exists V ∈ V such that V ⊆ U1 ∩ U2;
(2) U ∈ U ⇒ V ◦ V ⊆ U for some V ∈ V;
(3) U ∈ U ⇒ V −1 ⊆ U for some V ∈ V.
For an entourage U ∈ U and a point x ∈ X, write U [x] = {y ∈ X : (x, y) ∈

U}. For each x ∈ X, the collection Ux = {U [x] : U ∈ U} is a neighborhood base
at x which induces a topology of X. This topology can also be induced by a
base V of U in the same manner. This topology is Hausdorff if and only if U is
separating.

Lemma 2.1 (see [9], Section 8.3.13). For a compact Hausdorff space X, there
is a unique uniformity U which induces the topology of X.



PERSISTENCE AND POINTWISE TOPOLOGICAL STABILITY 1141

2.2. Pointwise topological stability and persistence for continuous
maps of uniform spaces

Let (X, U) be a compact uniform space, f : X → X be a continuous map

of X (meanwhile, we call the pair (X, f) a dynamical system) and Ũ be the set
of closed symmetric entourages of U .

In this subsection, we will recall and introduce some basic notions of dy-
namical systems in terms of entourages of uniform spaces.

Let U ∈ U be a symmetric entourage. We say that a sequence {xn}n∈Z0
of

X is a U -pseudo orbit of f if for every n ∈ Z0, (f(xn), xn+1) ∈ U . We say
that a sequence {xn}n∈Z0 of X is U -shadowed by z ∈ X if for every n ∈ Z0,
(fn(z), xn) ∈ U(see [30]).

Definition 2 (see [30]). We say that (X, f) has the shadowing property if for
every symmetric entourage U ∈ U , there exists a symmetric entourage V ∈ U
such that every V -pseudo orbit of f can be U -shadowed by some point in X.

Definition 3 (see [30]). We say that f is expansive if for each n ∈ Z0,

(fn(x), fn(y)) ∈ U

for some U ∈ Ũ , then x = y, i.e.,

△X =
⋂

n∈Z0

(f × f)−nU.

Such an entourage U is called an expansivity neighborhood of f .

Denote by I : X → X the identity map. If necessary we write IX to indicate
the dependence on X. In the case when A ⊂ X we use IA : A → X to denote
the inclusion, i.e., IA(x) = x for x ∈ A (see [8]). Given a continuous map
g : X → X and ∅ ≠ A ⊂ X, we write

ΓA(f, g) =
⋂

{U ∈ U : (f(x), g(x)) ∈ U for each x ∈ A},

and Γ(f, g) = ΓX(f, g).
Denote by Og(x) = {gn(x) : n ∈ Z0} the orbit of x ∈ X under a continuous

self-map g of X.

Definition 4 (see [30]). We say that f is topologically stable if for every sym-
metric entourage W ∈ U , there exists a symmetric entourage V ∈ U such that
for every continuous map g : X → X with Γ(f, g) ⊂ V , there is a continuous
map h : X → X satisfying

(1) Γ(h, I) ⊂ W ;
(2) f ◦ h = h ◦ g.

Remark 2.2. The notions of expansivity, shadowing property and topological
stability of a homeomorphism of a compact uniform space can be similarly
defined.
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Definition 5 (see [30]). We say that x ∈ X is a topologically stable point of
f if for each symmetric entourage U ∈ U , there exists a symmetric entourage
Vx ∈ U such that for every continuous map g : X → X with Γ(f, g) ⊂ Vx, there

is a continuous map h : Og(x) → X satisfying
(1) Γ

Og(x)
(h, I

Og(x)
) ⊂ U ;

(2) f ◦ h = h ◦ g.

Denote by T (f) the set of topologically stable points of f .

Definition 6 (see [30]). We say that f is pointwise topologically stable if every
point of X is topologically stable (i.e., T (f) = X).

Clearly, every topologically stable continuous map is pointwise topologically
stable. But we have no idea about the converse even X is metrizable (see [30]
for more details).

We say that f is equicontinuous if the associated iterated family {fn : n ∈
Z0} is equicontinuous, i.e., for each symmetric entourage U ∈ U , there exists
a symmetric entourage V ∈ U such that (x1, x2) ∈ V implies that for every
n ∈ Z0, (f

n(x1), f
n(x2)) ∈ U .

Definition 7. We say that f is persistent if for each U ∈ Ũ , there exists

V ∈ Ũ such that for every x ∈ X and every continuous map g : X → X with
Γ(f, g) ⊂ V , there is y ∈ X satisfying that for every n ∈ Z0, (f

n(x), gn(y)) ∈ U .

Remark 2.3. Let (X, U) be a compact uniform space, f : X → X be a home-
omorphism. The persistence of f can be similarly defined as: f is persistent

if for each U ∈ Ũ , there exists V ∈ Ũ such that for every x ∈ X and every
homeomorphism g : X → X with Γ(f, g) ⊂ V , there is y ∈ X satisfying that
for every n ∈ Z, (fn(x), gn(y)) ∈ U .

Example 2.4. Let X = {0} ∪ { 1
n : n ∈ Z+} ⊂ R with the relative uniformity

UX of the uniform space (R,U), where U is the usual uniformity on R, having
the base collection of sets Uε and Uε = {(x, y) ∈ R× R : |x− y| < ε} for each

ε > 0. Then (X,UX) is a compact uniform space. Let ŨX = {Vε : ε > 0} be the
set of closed symmetric entourages, where Vε = {(x, y) ∈ X ×X : |x− y| ≤ ε}.
It is not hard to verify that the identity I : X → X is persistent.

Example 2.5. The finite set Xi = {0, 1} is fixed with the discrete topology
for i ∈ Z. Consider X = Π∞

i=−∞Xi with the usual metric d and the usual
uniformity U with a base consisting of sets Vε = {(x, y) ∈ X × X : d(x, y) <
ε} for each ε > 0, where the metric d is defined as follows: For each x =
(. . . , x−j , . . . , x−1, x0, x1, . . . , xj , . . .), y = (. . . , y−j , . . . , y−1, y0, y1, . . . , yj , . . .)
∈ X, d(x, y) = 2−n if n is the largest positive integer with xj = yj for all
−n < j < n, and d(x, y) = 1 if x0 ̸= y0. Then (X, U) is a compact uniform
space. Define the shift map σ : X → X as (σ(x))j = xj+1 for all j ∈ Z. It is well
known that σ is topologically stable (since it is expansive and has the shadowing

property). Now we show that σ is not persistent. Let Ũ = {Dε : ε > 0} be the
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set of closed symmetric entourages, where Dε = {(x, y) ∈ X×X : d(x, y) ≤ ε}.
Put D 1

8
∈ Ũ and for each Dε1 ∈ Ũ , there is n > 0 such that 1

2n < ε1. Define a

homeomorphism g : X → X as

(1) (g(x))j =


xj , if j > n or j < −n;

xj+1, if − n ≤ j < n;

x−n, if j = n

for each x = (. . . , x−j , . . . , x−1, x0, x1, . . . , xj , . . .) ∈ X. Clearly, we obtain that
Γ(σ, g) ⊂ Dε1 and g2n+1(z) = z for each z ∈ X. Next consider

a = (· · · 0, . . . , 0, 1, 0, 0, 1, 0, 1̇, 0, 1, 0, 0, 1, 0, . . . , 0, . . .) ∈ X.

Then for all z ∈ X with (a, z) ∈ D 1
8
, it is not hard to verify that

(σ2n+1(a), g2n+1(z)) /∈ D 1
8
;

for all z ∈ X with (a, z) /∈ D 1
8
, there exists k ∈ Z0 with k ≤ 2 such that

(σk(a), gk(z)) /∈ D 1
8
. Therefore, σ is not persistent (this example comes from

[22]).

3. Persistent measures for continuous maps of uniform spaces

In this section we introduce the notion of persistence for a Borel probability
measure with respect to a continuous map of a compact uniform space. For
the sake of description, we denote by A the closure of A ⊂ X and A − B the
difference set of A,B ⊂ X.

Definition 8. Let (X, f) be a dynamical system. We say that

(1) A nonempty set K ⊂ X is a persistent set of f if for each U ∈ Ũ ,
there exists V ∈ Ũ such that for every x ∈ K and every continuous map
g : X → X with Γ(f, g) ⊂ V , there is y ∈ X satisfying that for every n ∈ Z0,
(fn(x), gn(y)) ∈ U ;

(2) x ∈ X is a persistent point of f if {x} is a persistent set of f ;
(3) f is persistent if X is a persistent set of f ;
(4) f is pointwise persistent if every point of X is persistent.

If the set of persistent points of f is denoted by Persi(f), then f is pointwise
persistent if and only if Persi(f) = X. Clearly, Persi(f) is an f -invariant set,
i.e., f(Persi(f)) ⊂ Persi(f).

It is natural to answer whether every pointwise persistent continuous map
of a compact uniform space is persistent. We have no idea about this question
but it holds for equicontinuous maps (see Lemma 4.3).

Next we will prove that Persi(f) is a measurable set. For this we use
the following elementary lemma. For simplicity, for given continuous maps

f, g : X → X of a compact uniform space (X, U), x ∈ X and U ∈ Ũ , we write

Γf,g
U (x) = {y ∈ X : (fn(x), gn(y)) ∈ U for every n ∈ Z0}
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=
⋂

n∈Z0

g−n(U [fn(x)])

and

B(U, f, g) = {x ∈ X : Γf,g
U (x) ̸= ∅}.

Lemma 3.1. Let (X, U) be a compact uniform space with the first axiom of
countability and f, g : X → X be continuous maps. Then B(U, f, g) is closed

(hence measurable) for every U ∈ Ũ .

Proof. Fix U ∈ Ũ , it suffices to show that B(U, f, g) ⊂ B(U, f, g). Take

x ∈ B(U, f, g). Since X is a compact uniform space with the first axiom of
countability, there exists a sequence {xk}k∈Z+

⊂ B(U, f, g) which converges to
x. And since for each k ∈ Z+, xk ∈ B(U, f, g), there exists yk ∈ X such that for
every n ∈ Z0, (f

n(xk), g
n(yk)) ∈ U . Without loss of generality, we assume that

yk → y for some y ∈ X. Then, by fixing n ∈ Z0 and letting k → ∞ we obtain

(fn(x), gn(y)) ∈ U . It follows that y ∈ Γf,g
U (x) and hence Γf,g

U (x) ̸= ∅, i.e.,
x ∈ B(U, f, g). Therefore, B(U, f, g) is closed and the proof is completed. □

Recall that the Borel σ-algebra of X is the σ-algebra generated by all open
subsets of X. Every element of the Borel σ-algebra of X is referred to as a
Borelian of X. A Borel probability measure of X is a σ-additive measure,
defined in the Borel σ-algebra of X, which takes the value 1 at X (see [26]).

Recall that a subset of a topological space Y is a Gδ-set if it is a countable
intersection of open sets; an Fσ-set if it is a countably union of closed sets; a
Gδσ-set if it is a countably union of Gδ-sets and an Fσδ-set if it is a countably
intersection of Fσ-sets. These classes form part of the so-called Borel hierarchy
(see [12]). All such classes are formed by measurable sets, namely, they belong
to the Borel σ-algebra of Y .

Corollary 3.2. Let (X, U) be a compact uniform space with the first axiom
of countability and f : X → X be a continuous map. Then Persi(f) is an
Fσδ-subset (hence measurable) of X.

Proof. Obviously,

X − Persi(f) =
⋃
U∈Ũ

⋂
V ∈Ũ

C(U, V ),

where

C(U, V )

= {x ∈ X : Γf,g
U (x) = ∅ for some continuous map g : X → X with Γ(f, g) ⊂ V }.

It follows from Lemma 3.1 that C(U, V ) is open for any U, V ∈ Ũ . Then,
X−Persi(f) is a Gδσ-subset of X and so Persi(f) is an Fσδ-subset of X. The
proof is finished. □
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The first natural attempt to extend the concept of persistence from continu-
ous maps to Borel probability measures of a compact uniform space is through
the following concept (based on Corollary 3.2).

Definition 9. Let (X, U) be a compact uniform space with the first axiom of
countability and f : X → X be a continuous map. A Borel probability measure
µ of X is called almost persistent (or pointwise persistent) if µ(Persi(f)) = 1.

Proposition 3.3. Let (X, U) be a compact uniform space with the first axiom
of countability and f : X → X be a continuous map. Suppose that µ is a Borel

probability measure of X satisfying the following property: For each U ∈ Ũ ,
there exists V ∈ Ũ and a full measure subset B of X such that for every
continuous map g : X → X with Γ(f, g) ⊂ V and every x ∈ B, there is
y ∈ X satisfying that for every n ∈ Z0, (f

n(x), gn(y)) ∈ U . Then µ is almost
persistent.

Proof. Take a sequence {Uk}∞k=1 of decreasing closed symmetric entourages
with ∩∞

k=1Uk = △X . By the given condition, there exists a sequence {Vk}∞k=1

of closed symmetric entourages and a sequence {Bk}∞k=1 of full measure sets
such that for every continuous map g : X → X with Γ(f, g) ⊂ Vk and every
x ∈ Bk, there is y ∈ X satisfying that for every k ∈ Z+ and every n ∈ Z0,
(fn(x), gn(y)) ∈ Uk.

Write B = ∩∞
k=1Bk. It is easy to prove that B has full measure. Now take

U ∈ Ũ . Fix a large enough k ∈ Z+ such that Uk ⊂ U and choose a continuous
map g : X → X with Γ(f, g) ⊂ Vk. For each x ∈ B (in fact, x ∈ Bk), there
is y ∈ X such that for every n ∈ Z0, (f

n(x), gn(y)) ∈ Uk ⊂ U . Hence x is
a persistent point and this proves that B ⊂ Persi(f). Then, µ(Persi(f)) ≥
µ(B) = 1 so µ(Persi(f)) = 1 and the proof is finished. □

This proposition motivates us to introduce the second notion of persistence
for Borel probability measures.

Definition 10. A Borel probability measure µ ofX is called strongly persistent

if for each U ∈ Ũ , there exists V ∈ Ũ and a full measure set B with respect to
µ such that for every continuous map g : X → X with Γ(f, g) ⊂ V and every
x ∈ B, there is y ∈ X satisfying that for every n ∈ Z0, (f

n(x), gn(y)) ∈ U .

We can therefore reformulate Proposition 3.3 by saying that every strongly
persistent measure is almost persistent.

Remark 3.4. Let δx be the Dirac measure supported on x ∈ X, i.e., δx is the
Borel probability measure of X such that

(2) δx(A) =

{
1, if x ∈ A;

0, if x /∈ A.

Then, for every continuous map f : X → X,

Persi(f) = {x : δx is a strongly persistent measure of f}.
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Remark 3.5. If µ1, . . . , µk are strongly persistent measures of a continuous map

f : X → X, and t1, . . . , tk ∈ R+ satisfy
∑k

i=1 ti = 1, then
∑k

i=1 tiµi is also a
strongly persistent measure of f .

Finally, based on Lemma 3.1, we give the third notion of persistence for
Borel probability measures.

Definition 11. Let (X, U) be a compact uniform space with the first axiom
of countability and f : X → X be a continuous map. A Borel probability

measure µ of X is called persistent if for each U ∈ Ũ , there exists V ∈ Ũ such
that µ(B(U, f, g)) = 1 for every continuous map g : X → X with Γ(f, g) ⊂ V .

Remark 3.6. Every strongly persistent measure is persistent (it is clear if note
that the full measure set B in Definition 10 is contained in B(U, f, g)). There-
fore, Remarks 3.4 and 3.5 are valid if we replace “strongly persistent measure”
by “persistent measure” in the corresponding statements.

Let (X, U) be a compact uniform space with the first axiom of countability
and f : X → X be a continuous map. The following statements illustrate the
relationship between the aforementioned concepts of measure persistence.

(1) Every Borel probability measure of X is strongly persistent.
(2) Every Borel probability measure of X is almost persistent.
(3) Every Borel probability measure of X is persistent.
Then, (1) ⇒ (2) and (1) ⇒ (3). In Lemma 4.2 we will prove that (2) ⇒ (3)

for equicontinuous continuous maps.

Lemma 3.7. Let (X, U) be a compact uniform space with the first axiom
of countability and f : X → X be a continuous map. Then the following
statements are equivalent:

(1) Every Borel probability measure of X is strongly persistent;
(2) Every Borel probability measure of X is persistent;
(3) f is persistent.

Proof. Since (1) ⇒ (2) and (3) ⇒ (1) are obvious, it remains to prove that
(2) ⇒ (3).

We assume by contradiction that every Borel probability measure of X is

persistent but f is not. It turns out that there exists U ∈ Ũ such that for a
decreasing sequence {Vk}∞k=1 of closed symmetric entourages with ∩k∈Z+

Vk =
△X , there is a sequence {gk}∞k=1 of continuous maps of X with Γ(f, gk) ⊂ Vk

and a sequence {xk}∞k=1 ⊂ X with

(3)
⋂

n∈Z0

g−n
k (U [fn(xk)]) = ∅, ∀k ∈ Z+.

Denote by δz the Dirac measure supported on z ∈ X. Define

µ =

∞∑
k=1

2−kδxk
.
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Then, it follows from the hypothesis that µ is a persistent measure of f . Let

V ∈ Ũ be given by this property for U ∈ Ũ as above. Pick k0 ∈ Z+ large
enough such that gk0

: X → X satisfies Γ(f, gk0
) ⊂ Vk0

⊂ V . Then, there is a
full measure subset Bk0 of X such that

(4)
⋂

n∈Z0

g−n
k0

(U [fn(z)]) ̸= ∅, ∀z ∈ Bk0
.

Since µ(Bk0
) = 1 we obtain δxk0

(Bk0
) = 1, and so xk0

∈ Bk0
. Replacing z by

xk0 in (4), we get ⋂
n∈Z0

g−n
k0

(U [fn(xk0
)]) ̸= ∅,

which contradicts (3). This contradiction proves the result. □

4. Persistence of equicontinuous maps of uniform spaces

In this section, we discuss the relationships of several kinds of persistence
of equicontinuous maps of uniform spaces. First of all, we give some necessary
lemmas.

Lemma 4.1. Let (X, U) be a compact uniform space with the first axiom of
countability. Then the set of persistent points of an equicontinuous continuous
map of X is closed.

Proof. Let f : X → X be an equicontinuous continuous map. It suffices to
show that Persi(f) ⊂ Persi(f). Take x ∈ Persi(f). Since X is compact and
satisfies the first axiom of countability, there exists a sequence {xk}k∈Z+

⊂
Persi(f) which converges to x. For a given U ∈ Ũ , we choose V ∈ Ũ such

that V ◦ V ⊂ U . For this V ∈ Ũ , there exists a symmetric entourage W ∈ U
satisfying the definition of equicontinuity of f . Since xk → x, we can choose
k ∈ Z+ such that (xk, x) ∈ W . Hence for each n ∈ Z0, (f

n(xk), f
n(x)) ∈ V =

V −1.
On the other hand, since for each k ∈ Z+, xk ∈ Persi(f), for V ∈ Ũ , we can

choose Dk ∈ Ũ satisfying the definition of persistence of xk. If g : X → X is a
continuous map with Γ(f, g) ⊂ Dk, then there is y ∈ X such that for each n ∈
Z0, (f

n(xk), g
n(y)) ∈ V . Thus, for every n ∈ Z0, (f

n(x), gn(y)) ∈ V ◦ V ⊂ U ,
which shows that x ∈ Persi(f). Therefore, Persi(f) is closed and the proof is
finished. □

Recall that the support of a Borel probability measure ν of a compact uniform
space (X, U) is the set of all points x ∈ X with ν(U [x]) > 0 for every U ∈ U
(see [26]). Denote by supp(ν) the support of ν.

Lemma 4.2. Let (X, U) be a compact uniform space with the first axiom
of countability. Then every almost persistent measure of an equicontinuous
continuous map of X is persistent.
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Proof. Let f : X → X be an equicontinuous continuous map. Assume to the
contrary that f admits an almost persistent measure µ which is not persistent.

Then there exists U ∈ Ũ satisfying the opposite side of persistence of µ. Take a
decreasing sequence {Vk}∞k=1 of closed symmetric entourages with ∩k∈Z+Vk =
△X , and then there exists a sequence {gk}∞k=1 of continuous maps of X with
Γ(f, gk) ⊂ Vk and a sequence {Ak}∞k=1 of positive measure sets satisfying that
for all k ∈ Z+,

(5)
⋂

n∈Z0

g−n
k (U [fn(x)]) = ∅, ∀x ∈ Ak.

Without loss of generality, we chooseD ∈ Ũ such thatD◦D ⊂ U . Since for each
k ∈ Z+, Ak has positive measure with respect to µ, and so Ak ∩ supp(µ) ̸= ∅.

On the other hand, µ is almost persistent and so supp(µ) ⊂ Persi(f). But
f is equicontinuous, Persi(f) is closed by Lemma 4.1, and thus supp(µ) ⊂
Persi(f), which yields that ∅ ≠ Ak ∩ supp(µ) ⊂ Ak ∩ Persi(f), that is,

Ak ∩ Persi(f) ̸= ∅, ∀k ∈ Z+.

Therefore for each k ∈ Z+, we can choose xk ∈ Ak ∩ Persi(f). Since X is
compact and satisfies the first axiom of countability, we assume that xk → x

for some x ∈ X and as Persi(f) is closed, we get x ∈ Persi(f). For D ∈ Ũ as
above, there exists a symmetric entourage W ∈ U satisfying the definition of
equicontinuity of f . Since xk → x, we can fix k such that (xk, x) ∈ W . Hence
for each n ∈ Z0, (f

n(xk), f
n(x)) ∈ D.

Since x is persistent, let V ∈ Ũ be given by this property for D ∈ Ũ as
above. Fix a large enough k ∈ Z+ such that Γ(f, gk) ⊂ Vk ⊂ V . Then, there
is y ∈ X satisfying that for each n ∈ Z0, (f

n(x), gnk (y)) ∈ D. Thus, for every
n ∈ Z0, (f

n(xk), g
n
k (y)) ∈ D ◦D ⊂ U , which yields that

y ∈
⋂

n∈Z0

g−n
k (U [fn(xk)]).

This together with xk ∈ Ak contradicts (5). The proof is completed. □

Lemma 4.3. Let (X, U) be a compact uniform space with the first axiom of
countability. Then every equicontinuous pointwise persistent continuous map
of X is persistent.

Proof. Let f : X → X be an equicontinuous pointwise persistent continuous
map. It follows that every Borel probability measure of X is almost persistent
and so persistent by Lemma 4.2. Then, f is persistent by Lemma 3.7 and the
proof is finished. □

Let (X, U) be a compact uniform space and f : X → X be a continuous
map. x ∈ X is called an equicontinuous point of f if for each symmetric
entourage U ∈ U , there exists a symmetric entourage V ∈ U such that if y ∈ X
and (x, y) ∈ V , then for every n ∈ Z0, (f

n(x), fn(y)) ∈ U .
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Denote by Eq(f) the set of equicontinuous points of f . It is easy to see that
if f is equicontinuous, then every point of X is equicontinuous.

Lemma 4.4. Let (X, U) be a compact uniform space and f : X → X be a
continuous map. Then Eq(f) ∩ T (f) ⊂ Persi(f).

Proof. Suppose x ∈ Eq(f) ∩ T (f) and U ∈ Ũ . We choose V ∈ Ũ such that
V ◦ V ⊂ U . For this V , there exists a symmetric entourage W ∈ U with
W ⊂ V satisfying the definition of equicontinuous point of f . For the above
W ∈ U , there exists a symmetric entourage D ∈ U satisfying the definition of

topologically stable points. Since Ũ is a base of U , there exists D⋆ ∈ Ũ such
that D⋆ ⊂ D.

Assume that g : X → X is a continuous map with Γ(f, g) ⊂ D⋆. Then,

there is a continuous map h : Og(x) → X satisfying

Γ
Og(x)

(
h, I

Og(x)

)
⊂ W

and f ◦ h = h ◦ g. In particular for each y ∈ Og(x), (h(y), y) ∈ W .
Therefore for every n ∈ Z0, we obtain (fn(x), fn(h(x))) ∈ V −1 = V and

(fn(h(x)), gn(x)) = (h(gn(x)), gn(x)) ∈ W ⊂ V . Hence (fn(x), gn(x)) ∈ V ◦
V ⊂ U , which shows that x ∈ Persi(f). This ends the proof. □

Now by virtue of the above lemmas, we can prove the main result of this
section.

Theorem 4.5. Let (X, U) be a compact uniform space with the first axiom of
countability. Then every equicontinuous pointwise topologically stable continu-
ous map of X is persistent.

Proof. Let f : X → X be an equicontinuous pointwise topologically stable
continuous map. Then Eq(f) = X = T (f) and so Eq(f) ∩ T (f) = X, which
together with Lemma 4.4 implies Persi(f) = X. Therefore, f is pointwise
persistent and so persistent by Lemma 4.3. The proof is completed. □

5. Shadowing property, expansivity and topological stability of
uniform limits

In this section we discuss the shadowing property, expansivity and topolog-
ical stability of the limit of a sequence of continuous self-maps of a compact
uniform space.

Let (X,U) be a compact uniform space, f : X → X be a continuous map,
{fn}n∈Z+ be a sequence of continuous self-maps of X.

Definition 12. We say that {fn}n∈Z+
has the uniform shadowing property if

for each sequence {Uk}k∈Z+ of closed symmetric entourages, there exists V ∈ Ũ
such that for each n ∈ Z+, every V -pseudo-orbit of fn can be Uk-shadowed by
some point in X for fn.
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Definition 13. We say that {fn}n∈Z+
is uniformly expansive if for every n ∈

Z+, fn is expansive with the same expansivity neighborhood W ∈ Ũ .

We say that {fn}n∈Z+
converges uniformly to f if for each U ∈ Ũ , there

exists N ∈ Z+ such that for each n ≥ N , (fn(x), f(x)) ∈ U for every x ∈ X.

Lemma 5.1. Let (X, U) be a compact uniform space with the first axiom of
countability, f : X → X be a continuous map and {fn}n∈Z+

a sequence of
continuous self-maps of X which converges uniformly to f . If {fn}n∈Z+

has
the uniform shadowing property, then f has the shadowing property.

Proof. Given U ∈ Ũ , let U1 ∈ Ũ with U1 ◦U1 ◦U1 ⊂ U . Since {fn}n∈Z+
has the

uniform shadowing property, choose V ∈ Ũ such that for each n ∈ Z+, every
V -pseudo-orbit of fn can be U1-shadowed by some point yn ∈ X for fn.

Pick V1 ∈ Ũ such that V1 ◦ V1 ⊂ V . Let {xi}i∈Z0
be a V1-pseudo-orbit of

f . We claim that {xi}i∈Z0
is a V -pseudo-orbit of fn if n is sufficiently large.

Indeed, since {fn}n∈Z+
converges uniformly to f , there exists N0 ∈ Z+ such

that for each n ≥ N0, (fn(x), f(x)) ∈ V1 for every x ∈ X. Then for every
n ≥ N0 and every i ∈ Z0, (fn(xi), f(xi)) ∈ V1, (f(xi), xi+1) ∈ V1 and so
(fn(xi), xi+1) ∈ V1 ◦ V1 ⊂ V . This proves the claim.

The uniform shadowing property of {fn}n∈Z+
implies that for every n ≥ N0,

there is yn ∈ X such that for every i ∈ Z0, (f
i
n(yn), xi) ∈ U1. Let {yn}n≥N0

be
the sequence of such points. Since X is compact and satisfies the first axiom of
countability, we assume that {yn}n≥N0 → y for some y ∈ X. Fix i ∈ Z+. Since
{fn}n∈Z+ converges uniformly to f , {f i

n}n∈Z+ converges uniformly to f i. So we

can choose N ∈ Z+ with N ≥ N0 such that for each n ≥ N , (f i
n(yn), f

i(yn)) ∈
U1 = U−1

1 . On the other hand, the continuity of f i implies f i(yn) → f i(y),
then we can choose n ∈ Z+ such that (f i(yn), f

i(y)) ∈ U1 = U−1
1 . Therefore,

if we choose n sufficiently large, we obtain (f i(y), xi) ∈ U1 ◦U1 ◦U1 ⊂ U . Thus
f has the shadowing property and the proof is completed. □

Lemma 5.2. Let (X, U) be a compact uniform space, f : X → X be a
continuous map and {fn}n∈Z+

be a sequence of continuous self-maps of X
which converges uniformly to f . If {fn}n∈Z+

is uniformly expansive, then f is
expansive.

Proof. Let W ∈ Ũ be an expansive neighborhood for {fn}n∈Z+
and let U ∈ Ũ

with U◦U◦U ⊂ W . Since {fn}n∈Z+
converges uniformly to f , there existsN0 ∈

Z+ such that for every n ≥ N0, (fn(x), f(x)) ∈ U for each x ∈ X. Note that if
{fn}n∈Z+ converges uniformly to f , then {f i

n}n∈Z+ converges uniformly to f i

for each i ∈ Z0. Taking n = N0 sufficiently large, we obtain (f i
N0

(y), f i(y)) ∈ U
for each y ∈ X.

For each pair x, y ∈ X and each n ∈ Z0, if (f
n(x), fn(y)) ∈ U , then for

every n ∈ Z0,

(fn
N0

(x), fn
N0

(y)) ∈ U ◦ U ◦ U−1 = U ◦ U ◦ U ⊂ W,
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which shows that x = y since fN0
is expansive. Hence f is expansive. The

proof is finished. □

Lemma 5.3. Let (X,U) be a compact uniform space with the first axiom of
countability, f : X → X be an expansive continuous map with an expansivity

neighborhood W ∈ Ũ . Then, for each symmetric entourage U ∈ U , there exists
N ≥ 1 such that for every 0 ≤ n ≤ N , (fn(x), fn(y)) ∈ W implies (x, y) ∈ U .

Proof. We assume by contradiction that there exists a symmetric entourage
V ∈ U such that for each k ≥ 1, there exist xk, yk ∈ X satisfying that for
every 0 ≤ n ≤ k, (fn(xk), f

n(yk)) ∈ W but (xk, yk) /∈ V . Note that the family
of open symmetric entourages is a base of the uniformity U . We can pick an
open symmetric entourage V0 such that V0 ⊂ V and thus for each k ≥ 1,
(xk, yk) /∈ V0. Since X is compact and satisfies the first axiom of countability,
there exists a subsequence {xkl

}l∈Z+ of {xk}k∈Z+ such that {xkl
}l∈Z+ → x0 for

some x0 ∈ X and there exists a subsequence {ykl
}l∈Z+

of {yk}k∈Z+
such that

{ykl
}l∈Z+

→ y0 for some y0 ∈ X. Then, (x0, y0) /∈ V0 and the continuity of fn

implies (fn(x0), f
n(y0)) ∈ W for each n ∈ Z+. Since f is expansive, x0 = y0

and so there is a contradiction and the proof is finished. □

Remark 5.4. In Lemma 2.5 of [30], the authors proved Lemma 5.3 for the case
of homeomorphisms.

We say that f is uniformly continuous if for each symmetric entourage U ∈
U , there exists a symmetric entourage V ∈ U such that (x, y) ∈ V implies
(f(x), f(y)) ∈ U , whenever x, y ∈ X.

Theorem 5.5. Let (X,U) be a compact uniform space with the first axiom of
countability. Then every expansive continuous map of X with the shadowing
property is topologically stable.

Proof. Let f : X → X be an expansive continuous map with the shadowing

property and W ∈ Ũ be an expansive neighborhood for f . Let U ∈ U be a
symmetric entourage with U ◦ U ⊂ W and U ◦ U ◦ U ⊂ W . For U ∈ U , there
exists a symmetric entourage V ∈ U satisfying the definition of the shadowing
property of f . Fix a continuous map g : X → X with Γ(f, g) ⊂ V . Clearly,
every g-orbit Og(x) of x ∈ X is a V -pseudo-orbit of f . Hence, it can be U -
shadowed by some point in X, which implies that there exists y ∈ X such
that for every n ∈ Z0, (fn(y), gn(x)) ∈ U . If z ∈ X is also U -shadowing
the V -pseudo-orbit Og(x) of f for x ∈ X, then (fn(z), gn(x)) ∈ U for every
n ∈ Z0. Thus, for every n ∈ Z0, (f

n(y), fn(z)) ∈ U ◦U−1 = U ◦U ⊂ W , which
shows that y = z from the expansivity of f . Therefore for every x ∈ X, the
V -pseudo-orbit Og(x) of f can be U -shadowed by a unique point in X.

For each x ∈ X, define a map h : X → X by h(x) = yx, where yx ∈ X
is the unique U -shadowing point of the V -pseudo-orbit Og(x) of f . Then
for every n ∈ Z0, (f

n(h(x)), gn(x)) ∈ U . Pick n = 0, then we obtain that
(h(x), x) ∈ U and hence Γ(h, I) ⊂ U . Since for each x ∈ X and every n ∈
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Z0, (f
n+1(h(x)), gn+1(x)) ∈ U and (fn(h(g(x))), gn(g(x))) ∈ U , by the above

argument, we have f(h(x)) = h(g(x)) for each x ∈ X, i.e., f ◦ h = h ◦ g.
Next we show that h : X → X is continuous. Given a symmetric entourage

T ∈ U , by Lemma 5.3, there exists N ≥ 1 such that for every 0 ≤ n ≤ N ,
(fn(a), fn(b)) ∈ W implies (a, b) ∈ T . Since X is compact, g is uniformly
continuous on X and so there is a symmetric entourage H ∈ U such that
(x, y) ∈ H implies (gn(x), gn(y)) ∈ U for every 0 ≤ n ≤ N . Then if (x, y) ∈ H,
we have that for every 0 ≤ n ≤ N , then

(fn(h(x)), fn(h(y))) = (h(gn(x)), h(gn(y))) ∈ U ◦ U ◦ U−1 = U ◦ U ◦ U ⊂ W.

Thus by Lemma 5.3, (h(x), h(y)) ∈ T . This ends the proof. □

Remark 5.6. See Theorem 3.2 of [30] for the case of homeomorphisms of The-
orem 5.5.

Theorem 5.7. Let (X,U) be a compact uniform space with the first axiom of
countability, f : X → X be a continuous map and {fn}n∈Z+

be a sequence
of continuous self-maps of X which converges uniformly to f . If {fn}n∈Z+ is
uniformly expansive and has the uniform shadowing property, then f is topo-
logically stable.

Proof. Suppose that {fn}n∈Z+
is uniformly expansive and has the uniform

shadowing property. By Lemma 5.1, f has the shadowing property and by
Lemma 5.2, f is expansive, and so by Theorem 5.5, f is topologically stable.
This completes the result. □

6. Topologically stable point and shadowable point of continuous
maps

In this section, we will introduce several notions of dynamical systems from
the viewpoint of open covers. At first, we introduce the notion of shadowable
points of continuous maps of compact topological spaces. For convenience, we
always assume that (X, f) is a dynamical system which means that X is a
compact topological space and f : X → X is a continuous map, and all the
involved finite open covers of X are non-trivial, namely, if U is a finite open
cover of X, then U ̸= {X}.

Let U be a finite open cover of X. We say that a sequence {xn}n∈Z0 of points
in X is a U-pseudo orbit of f if for every n ∈ Z0, there exists Un+1 ∈ U with
xn+1 ∈ Un+1 such that f(xn) ∈ Un+1. We say that a sequence ξ = {xn}n∈Z0

of X is U-shadowed by z ∈ X if for every n ∈ Z0, there exists Un ∈ U with
xn ∈ Un such that fn(z), xn ∈ Un.

We say that (X, f) has the shadowing property if for each finite open cover
V of X, there exists a finite open cover W of X such that every W-pseudo-
orbit of f can be V-shadowed by some point in X. Given a subset B ⊂ X,
we say that the sequence {xn}n∈Z0

of X is through B if x0 ∈ B. We say that
(X, f) has the shadowing property through a subset B ⊂ X if for each finite
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open cover V of X, there exists a finite open cover W of X such that every
W-pseudo-orbit of f through B can be V-shadowed by some point in X. In
addition, a homeomorphism of X has the shadowing property through B ⊂ X
can be similarly defined.

Definition 14. Let U0 be a finite open cover of X. A point x ∈ X is called a
U0-shadowable point of f if there exists a finite open cover W of X such that
every W-pseudo-orbit of f through {x} can be U0-shadowed by some point
in X. Denoted by Sh+(f,U0) the set of U0-shadowable points of f . We say
that x ∈ X is a shadowable point of f if for each finite open cover U of X,
x ∈ Sh+(f,U).

The set of shadowable points of f is denoted by Sh+(f). It is easy to see
that f has the shadowing property if and only if Sh+(f) = X. The shadowable
points of a homeomorphism of a compact topological space can be similarly
defined. We denote by Sh(f) the set of shadowable points of a homeomorphism
f of a compact topological space X.

Definition 15. (see [11]) Let U be a finite open cover of X. We say that f
is U-expansive if for every n ∈ Z0, there exists Un ∈ U such that if fn(x),
fn(y) ∈ Un whenever x, y ∈ X, then x = y.

Next we introduce the notion of topologically stable points of dynamical
systems.

Given a continuous map g : X → X and a finite open cover U of X, we
say that g is U-close to f if for each x ∈ X, there exists U ∈ U such that
f(x), g(x) ∈ U (see [11]).

Definition 16. (see [11]) We say that f is topologically stable if for each finite
open cover U of X, there exists a finite open cover V of X such that for every
continuous map g : X → X that is V-close to f , there is a continuous map
h : X → X satisfying

(1) for each x ∈ X, there exists Ux ∈ U with x ∈ Ux such that h(x) ∈ Ux;
(2) f ◦ h = h ◦ g.

Definition 17. We say that x ∈ X is a topologically stable point of f if for
each finite open cover U of X, there exists a finite open cover V of X such that
for every continuous map g : X → X that is V-close to f , there is a continuous
map h : Og(x) → X satisfying

(1) for each y ∈ Og(x), there exists Uy ∈ U with y ∈ Uy such that h(y) ∈ Uy;
(2) f ◦ h = h ◦ g.

The set of topologically stable points of f in the sense of open covers is
denoted by T ∗(f). We note that a necessary condition for a continuous map
f : X → X of a compact topological space X to be topologically stable is
that every point of X is topologically stable. But we do not know whether the
converse holds.
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Lemma 6.1. Let X be a compact topological space with the first axiom of
countability, W be a finite open cover of X and f : X → X be a W-expansive
continuous map of X. Then, given a finite open cover U of X, there exists
N ≥ 1 such that for every 0 ≤ n ≤ N , fn(x), fn(y) ∈ Wn for some Wn ∈ W
implies x, y ∈ U for some U ∈ U .
Proof. We assume by contradiction that there exists a finite open cover U of
X such that for each k ≥ 1, there exist xk, yk satisfying for every 0 ≤ n ≤ k,
fn(xk), f

n(yk) ∈ Wn,k for some Wn,k ∈ W but xk, yk /∈ U for every U ∈
U . Since X is compact and satisfies the first axiom of countability, there are
sequences {xkl

}l∈Z0 → x0 ∈ X and {ykl
}l∈Z0 → y0 ∈ X, respectively. Fix

n ∈ Z0, because W is a finite open cover of X, we can choose the same open
set Wn ∈ W such that fn(xkl

), fn(ykl
) ∈ Wn for infinitely many l ∈ N. The

continuity of fn implies fn(x0), f
n(y0) ∈ Wn. Since f is W-expansive, we

obtain x0 = y0.

In addition, since U is a finite open cover of X, there is Ũ ∈ U such that

x0 = y0 ∈ Ũ . Note that {xkl
} → x0 and {ykl

} → y0, it follows that there is

N ∈ Z+ such that when l ≥ N , xkl
, ykl

∈ Ũ , and so there is a contradiction
and the proof is finished. □

We say that f : X → X is uniformly continuous if for each finite open cover
U of X, there is a finite open cover V of X that relates only to U such that
x, y ∈ V for some V ∈ V implies f(x), f(y) ∈ U for some U ∈ U .
Theorem 6.2. Let X be a disconnected compact topological space with the first
axiom of countability and W be a finite open cover of X. Then every shadowable
point of a W-expansive continuous map of X is topologically stable.

Proof. Let f : X → X be a W-expansive continuous map (since X is discon-
nected, there exists a finite open cover of X of which the elements are pairwise
disjoint, without loss of generality, we assume the elements of W are pairwise

disjoint). Suppose that x ∈ Sh+(f). For each finite open cover Ũ of X, clearly,

U =: Ũ ∩ W = {Ũ ∩ W : Ũ ∈ Ũ , W ∈ W} is also a finite open cover of X.
For this U , there exists a finite open cover V of X satisfying the definition of
the shadowableness of x. Fix a continuous map g : X → X that is V-close
to f . Obviously, the g-orbit Og(x) of x ∈ X is a V-pseudo-orbit of f . Hence,
it can be U-shadowed by some point in X, which implies that there exists
y ∈ X such that for every n ∈ Z0, there is Ugn(x) ∈ U with gn(x) ∈ Ugn(x)

such that fn(y), gn(x) ∈ Ugn(x). If z ∈ X is also U-shadowing the V-pseudo-
orbit Og(x) of f , then there is U

′

gn(x) ∈ U with gn(x) ∈ U
′

gn(x) such that

fn(z), gn(x) ∈ U
′

gn(x) for every n ∈ Z0. Then it follows from the choice of U
that there is Wn ∈ W such that Ugn(x), U

′

gn(x) ⊂ Wn. Thus, for every n ∈ Z0,

fn(y), fn(z) ∈ Wn for some Wn ∈ W which shows that y = z from the W-
expansiveness of f . Therefore, for every x ∈ X, the V-pseudo-orbit Og(x) of f
can be U-shadowed by a unique point in X.
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Let yx ∈ X be the unique U-shadowing point of the V-pseudo-orbit Og(x) of
f , then for every n ∈ Z0, there exists Ugn(x) ∈ U with gn(x) ∈ Ugn(x) such that

fn(yx), g
n(x) ∈ Ugn(x). Then, it is not hard to conclude that for each n ∈ Z0

and every k ∈ Z0, f
n(fk(yx)), g

n(gk(x)) ∈ Ugn+k(x) for some Ugn+k(x) ∈ U with

gn+k(x) ∈ Ugn+k(x). Therefore, fk(yx) ∈ X is the unique U-shadowing point
of the V-pseudo-orbit Ogk(x) of f .

Define a map h : Og(x) → X by h(gk(x)) = fk(yx) for each y = gk(x) ∈
Og(x). By the above argument, it is obvious that the map h is well defined.
Then for every n ∈ Z0 and each k ∈ Z0, there exists Ugn(gk(x)) ∈ U with

gn(gk(x)) ∈ Ugn(gk(x) such that fn(h(gk(x))), gn(gk(x) ∈ Ugn(gk(x)). In partic-
ular, pick n = 0, we obtain that there exists Uy ∈ U with y ∈ Uy such that

h(y), y ∈ Uy. Since

(f ◦ h)(gk(x)) = f(fk(yx)) = fk+1(yx)

= h(gk+1(x)) = h(g(gk(x))) = (h ◦ g)(gk(x))
for every k ∈ Z0, we obtain f ◦ h = h ◦ g.

Next we show that h : Og(x) → X is continuous. Given a finite open cover
T of X, by Lemma 6.1, there exists N ≥ 1 such that for every 0 ≤ n ≤ N ,
fn(a), fn(b) ∈ Wn for some Wn ∈ W implies a, b ∈ T for some T ∈ T . Since X
is compact, g is uniformly continuous on X and so there is a finite open cover

H of X such that x, y ∈ H for some H ∈ H implies gn(x), gn(y) ∈ W̃n for some

W̃n ∈ W and every 0 ≤ n ≤ N . Now take c, d ∈ Og(x) with c, d ∈ H for some
H ∈ H, we have that for every 0 ≤ n ≤ N ,

{fn(h(c)), fn(h(d))} = {h(gn(c)), h(gn(d))}
⊂ {h(gn(c)), gn(c)} ∪ {gn(c), gn(d)} ∪ {h(gn(d)), gn(d)}

⊂ Ugn(c) ∪ W̃n ∪ Ugn(d).

Then by the choice of U and the disjointness of the elements of W, it is not

hard to conclude that for every 0 ≤ n ≤ N , {fn(h(c)), fn(h(d))} ⊂ W ′
n for

some W
′

n ∈ W. Thus by Lemma 6.1, h(c), h(d) ∈ T
′
for some T

′ ∈ T and

so h is continuous. Then we can extend continuously h to Og(x) to obtain

a continuous map, still denote it by h : Og(x) → X. Clearly, by the above

argument, we get that for each y ∈ Og(x), there exists Uy ∈ U ⊂ Ũ with

y ∈ Uy such that h(y) ∈ Uy and f ◦ h = h ◦ g. Thus x ∈ T ∗(f) and the proof
is completed. □

Remark 6.3. In Theorem 4.6 of [30], the authors obtained that every shad-
owable point of an expansive homeomorphism of a compact uniform space is
topologically stable. Clearly, Theorem 6.2 and Theorem 4.6 of [30] are inde-
pendent.

We say that f has the finite shadowing property through B ⊂ X if for each
finite open cover U of X, there exists a finite open cover V of X such that every
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finite V-pseudo-orbit of f through B can be U-shadowed by some point in X.
In addition, a homeomorphism of X has the finite shadowing property through
a subset B of X can be similarly defined.

Proposition 6.4. Let X be a compact topological space with the first axiom of
countability, f : X → X be a homeomorphism of X. Then f has the shadowing
property through Sh(f) if and only if f has the finite shadowing property through
Sh(f).

Proof. Suppose that f has the shadowing property through Sh(f). Fix a finite
open cover U ofX and choose a finite open cover V ofX satisfying the definition
of the shadowing property through Sh(f). Let

Γ = {x−n, . . . , x−1, x0, x1, . . . , xm}

be a finite V-pseudo-orbit of f with x0 ∈ Sh(f). Then the sequence Γ̃ = {yk :
k ∈ Z} given by

(6) yk =


fk+n(x−n), if k < −n;

xk, if − n ≤ k ≤ m;

fk−m(xm), if k > m.

is a V-pseudo-orbit of f with y0 = x0 ∈ Sh(f). Since f has the shadowing
property through Sh(f), there is a point z ∈ X with the property that for
every k ∈ Z, there exists Uk ∈ U with yk ∈ Uk such that fk(z), yk ∈ Uk. Thus,
every finite V-pseudo-orbit of f through Sh(f) can be U-shadowed by some
point z ∈ X.

Conversely, given a finite open cover U of X and choose a finite open cover
V of X such that every finite V-pseudo-orbit of f through Sh(f) can be U-
shadowed by some point in X. Assume that ξ = {xn}n∈Z is a V-pseudo-orbit
of f through Sh(f). Fix m ∈ Z+ and let x̃n = xn−m. Then take a finite

sequence Γ̂ = {x−m, x−m+1, . . . , x0, x1, . . . , xm}, clearly, it is a V-pseudo-orbit
of f through Sh(f). Since f has the finite shadowing property through Sh(f),

there is a point zm ∈ X such that for each 0 ≤ n ≤ 2m, there exists Ũn,m ∈ U
with x̃n ∈ Ũn,m such that fn(zm), x̃n ∈ Ũn,m. Setting wm = fm(zm), then we
get that for each −m ≤ n ≤ m, there exists Un,m ∈ U with xn ∈ Un,m such

that fn(wm), xn ∈ Un,m. Since X is compact and satisfies the first axiom of
countability, we assume that wml

→ w for some w ∈ X. Fix −m ≤ n ≤ m,
because U is a finite open cover of X, we can choose the same open set Un ∈ U
such that fn(wml

), xn ∈ Un for infinitely many l ∈ Z+. The continuity of
fn implies fn(w), xn ∈ Un. Thus the V-pseudo-orbit ξ = {xn}n∈Z can be
U-shadowed by w ∈ X. Hence f has the shadowing property through Sh(f).
This proof is completed. □

Definition 18. (see [18, 21]) Let (X, f) be a dynamical system. We say that
f has the almost shadowing property if Sh+(f) is dense in X.
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Two dynamical systems (X, f) and (Y, g) are called topologically conjugated
if there is a homeomorphism h : X → Y such that g ◦ h = h ◦ f , where the
homeomorphism h is called a topological conjugacy between f and g.

Proposition 6.5. If (X, f) and (Y, g) are topological conjugated, then

h(Sh+(f)) = Sh+(g),

where h is the topological conjugacy between f and g.

Proof. Let U be a finite open cover of Y and y ∈ h(Sh+(f)). Then there
exists x ∈ Sh+(f) such that h(x) = y. Since X,Y are compact, h is uniformly
continuous and so there exists a finite open cover V of X such that a, b ∈ V
for some V ∈ V implies h(a), h(b) ∈ U for some U ∈ U . Since x ∈ X is a
shadowable point of f , for the finite open cover V, there exists a finite open
cover W of X such that every W-pseudo-orbit ξ = {xn}n∈Z0

of f with x0 = x
can be V-shadowed by some point in X.

Let h(W) =: {h(W ) : W ∈ W}, then h(W) is a finite open cover of Y . We
claim that every h(W)-pseudo-orbit ζ = {yn}n∈Z0

of g with y0 = y can be
U-shadowed by some point in Y . Put xn = h−1(yn) for each n ∈ Z0. Since
for every n ∈ Z0, there exists h(W ) ∈ h(W) such that g(yn), yn+1 ∈ h(W ), we
have that for each n ∈ Z0,

{f(xn), xn+1} = {f(h−1(yn)), h
−1(yn+1)}

= {h−1(g(yn)), h
−1(yn+1)} ⊂ W

for some W ∈ W and x0 = h−1(y0) = h−1(y) = x. Therefore, ξ = {xn}n∈Z0

is a W-pseudo-orbit of f with x0 = x and so there is a point z ∈ X such that
for every n ∈ Z0, there exists Vn ∈ V with xn ∈ Vn such that fn(z), xn ∈ Vn.
By the uniform continuity of h, we obtain h(xn) ∈ Un for some Un ∈ U and

h(fn(z)) ∈ h(Vn) = h(Vn) ⊂ Un. Thus for each n ∈ Z0, there exists Un ∈ U
with h(xn) = yn ∈ Un such that {h(fn(z)), yn} = {gn(h(z)), yn} ⊂ Un for
some Un ∈ U . So the h(W)-pseudo-orbit ζ = {yn}n∈Z0

of g with y0 = y can
be U-shadowed by a point h(z) ∈ Y . This proves the claim. Hence y ∈ Sh+(g)
and so h(Sh+(f)) ⊂ Sh+(g).

By a similar argument for h−1, we can prove the converse. Hence,

h(Sh+(f)) = Sh+(g)

and the proof is completed. □

Proposition 6.6. If (X, f) and (Y, g) are topological conjugated, then f has the
almost shadowing property if and only if g has the almost shadowing property.

Proof. Suppose that f has the almost shadowing property. Then Sh+(f) is a
dense subset of X. By Proposition 6.5, we see that Sh+(g) is a dense subset of
Y . Hence g has the almost shadowing property. Similarly, we can prove that
the converse is also true. This completes the proof. □
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