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Abstract. Consider a two dimensional smooth convex body with a
marked point on the boundary of it, sitting tangentially at the marked

point over a base curve in E2, H2 or S2 and the image of this body by

the reflection with respect to the tangent line of the base curve at the
marked point. When we roll these two bodies simultaneously along the

base curve, the trajectories of the marked point bound a closed region.
We show that the area of the closed region is independent of the shape of

the base curve if the base curve is not highly curved with respect to the

boundary curve of the convex body.

1. Introduction

Suppose a two dimensional convex body A in the Euclidean plane E2 whose
boundary ∂A is a smooth closed curve rolls without slipping along a curve,
called the base curve, which is not necessarily a geodesic line. Let us call the
curve traced by a marked point O on ∂A as A rolls along the base curve an
ovaloid. There are two ovaloids, each of which is drawn on one side of the base
curve. Let us call one of these ovaloid as the left ovaloid and the other right
ovaloid over the base curve. If A is initially sitting tangentially at the marked
point O over a base curve, then these two ovaloids, that is, the left ovaloid
together with the right ovaloid make a closed curve. Let us call the region
enclosed by these two ovaloids as the ovaloidal region over the base curve.

When the convex body is a round disk, it was shown in [1] and [2] that the
area of the ovaloidal region is independent of the shape of the base curve if the
base curve is not highly curved with respect to the boundary circle of the disk.

One can think of the ovaloidal region in the hyperbolic plane H2 of the
curvature −1 or in the sphere S2 of the curvature 1. In this article, we show
that the area of the ovaloidal region is independent of the shape of the base
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curve if the base curve is not highly curved with respect to the boundary curve
∂A of the convex body A, which is not necessarily a disk, not only in E2 but
in H2 or in S2.

Theorem 1.1. Let α(s) be the arclength parametrization of ∂A and β(s) the
arclength parametrization of the base curve such that α(0) = O = β(0). Let
κα(s) and κβ(s) be their signed curvature functions. If

|κβ(s)| ≤ κα(s),

then the area of the ovaloidal region over the base curve β in E2, H2 or in S2
is independent of the shape of the base curve β.

2. An observation

For the convex body A with O ∈ ∂A and for every point P ∈ ∂A consider
the geodesic line segment OP . Then, since A is convex, these geodesic line
segments fill up without intersection the convex body A:

A =
⋃

P∈∂A

OP.

Assume the convex body A lies tangent at O on the base curve. We roll a
convex body A along a base curve to get an ovaloid, which is the trajectory of
the marked point O ∈ ∂A. While the convex body rolls along the base curve,
the collection of line segments forming the convex body unfolds to another
collection of line segments, one of whose end point lies on the ovaloid and the
other on the base curve to form the region bounded by the ovaloid and the base
curve.

Let Q ∈ ∂A be the point such that the arclength from O to Q along ∂A is

q. Consider the directed geodesic line segment
−−→
QO. Then both the length

∣∣−−→QO∣∣
and the angle formed by the line tangent to ∂A at Q and the geodesic line

segment
−−→
QO are functions of the arclength q. Now suppose when rolling A,

the point Q touches the base curve at Q′ and at that moment, the point O is

moved to the point O′ of the ovaloid. Then the geodesic line segments
−−−→
Q′O′ fill

up the region bounded by the ovaloid and the base curve without intersection.
Moreover we see that

• The arclength along the base curve from O to Q′ is the same as the
arclengh from O to Q along ∂A.

• The length of the directed line segment
−−−→
Q′O′ is the same as that of the

directed line segment
−−→
QO :∣∣−−−→Q′O′∣∣ = ∣∣−−→QO∣∣.

• The angle formed by the line tangent to the base curve at Q′ and the

directed line segment
−−−→
Q′O′ is the same as the angle formed by the line

tangent to ∂A at Q and the directed line segment
−−→
QO.
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3. Parametrizations of A, left and right regions

3.1. Parametrization of A

Let the length of ∂A be l and α(s) be the arclength parametrization of ∂A
such that

α(0) = α(l) = O

and oriented so that κα(s) ≥ 0. Let γs(u) be the unit-speed geodesic connecting
the point α(s) = γs(0) and O whose length is r(s). Let tα(s),nα(s) be the unit
tangent vector field and the unit normal vector field of α(s) and ϕ(s) be the

oriented angle between tα(s) and
dγs

du (0):

(1) ϕ(s) = ∠

(
tα(s),

dγs
du

(0)

)
.

Then we have

γs(0) = α(s),

dγs
du

(0) = cosϕ(s) tα(s) + sinϕ(s)nα(s).

We can parametrize A as

A(s, u) = γs(u), 0 ≤ s ≤ l, 0 ≤ u ≤ r(s).

Note that

∂A

∂u
(s, 0) =

dγs
du

(0) = cosϕ(s) tα(s) + sinϕ(s)nα(s).

Note also that As(s, u) =
∂A
∂s (s, u) is the Jacobi field Js(u) along the geodesic

γs(u) whose initial data are

Js(0) = As(s, 0) =
dγs(0)

ds
=
dα

ds
= tα(s),

DJs
du

(0) =
d

du

∣∣∣∣
u=0

As(s, u) =
D

∂u

∂A

∂s
(s, 0) =

D

∂s

∂A

∂u
(s, 0)

=
D

ds
(cosϕ(s) tα(s) + sinϕ(s)nα(s))

= −ϕ′(s) sinϕ(s) tα(s) + cosϕ(s) t′α(s) + ϕ′(s) cosϕ(s)nα(s)

+ sinϕ(s)n′
α(s)

= −ϕ′(s) sinϕ(s) tα(s) + κα(s) cosϕ(s)nα(s) + ϕ′(s) cosϕ(s)nα(s)

− κα(s) sinϕ(s) tα(s)

=
(
ϕ′(s) + κα(s)

)(
− sinϕ(s) tα(s) + cosϕ(s)nα(s)

)
since

t′α(s) = κα(s)nα(s), n′
α(s) = −κα(s)tα(s).
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If we decompose Js(0) = tα(s) into tangential and normal components to
dγs

du (0), we have from (1) that the tangential component is

cosϕ(s)
dγs
du

(0) = cosϕ(s)
(
cosϕ(s) tα(s) + sinϕ(s)nα(s)

)
and the normal component is

Js(0)− cosϕ(s)
dγs
du

(0) = tα(s)− cosϕ(s)(cosϕ(s) tα(s) + sinϕ(s)nα(s))

= sinϕ(s)
(
sinϕ(s) tα(s)− cosϕ(s)nα(s)

)
.

One can see that DJs

du (0) is normal to dγs

du (0).
Let Tα(s, u), Nα(s, u) be the parallel translates of tα(s), nα(s) along the

geodesic γs(u). Then we have the followings:
(a) For A ⊂ E2,

As(s, u) = Js(u)

= cosϕ(s)
(
cosϕ(s)Tα(s, u) + sinϕ(s)Nα(s, u)

)
+ sinϕ(s)

(
sinϕ(s)Tα(s)− cosϕ(s)Nα(s)

)
+
(
ϕ′(s) + κα(s)

)(
− sinϕ(s)Tα(s, u) + cosϕ(s)Nα(s, u)

)
u

=
(
1− (ϕ′(s) + κα(s))u sinϕ(s)

)
Tα(s, u)

+ (ϕ′(s) + κα(s))u cosϕ(s)Nα(s, u),

Au(s, u) = cosϕ(s)Tα(s, u) + sinϕ(s)Nα(s, u).

(b) For A ⊂ H2,

As(s, u) = Js(u)

= cosϕ(s)(cosϕ(s)Tα(s, u) + sinϕ(s)Nα(s, u))

+ sinϕ(s)(sinϕ(s)Tα(s, u)− cosϕ(s)Nα(s, u)) coshu

+ (ϕ′(s) + κα(s))(− sinϕ(s)Tα(s, u) + cosϕ(s)Nα(s, u)) sinhu

=
(
cos2 ϕ(s)+coshu sin2 ϕ(s)−(ϕ′(s)+κα(s)) sinhu sinϕ(s)

)
Tα(s, u)

+
(
(1− coshu) sinϕ(s) + (ϕ′(s) + κα(s)) sinhu

)
cosϕ(s)Nα(s, u),

Au(s, u) = cosϕ(s)Tα(s, u) + sinϕ(s)Nα(s, u).

(c) For A ⊂ S2,

As = cosϕ(s)(cosϕ(s)Tα(s, u) + sinϕ(s)Nα(s, u))

+ sinϕ(s)(sinϕ(s)Tα(s, u)− cosϕ(s)Nα(s, u)) cosu

+ (ϕ′(s) + κα(s))(− sinϕ(s)Tα(s, u) + cosϕ(s)Nα(s, u)) sinu

=
(
cos2 ϕ(s) + cosu sin2 ϕ(s)− (ϕ′(s) + κα(s)) sinu sinϕ(s)

)
Tα(s, u)

+
(
(1− cosu) sinϕ(s) + (ϕ′(s) + κα(s)) sinu

)
cosϕ(s)Nα(s, u),

Au = cosϕ(s)Tα(s, u) + sinϕ(s)Nα(s, u).
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3.2. Parametrization of the left region

Let tβ(s),nβ(s) be the unit tangent vector field and the unit normal vector
field of the base curve β(s). Our observation gives the following parametriza-
tions L(s, t) of the left region:

L(s, u) = γLs (u), 0 ≤ s ≤ l, 0 ≤ u ≤ r(s),

where γLs(u) is the geodesic with

γLs (0) = β(s),
dγLs
du

(0) = cosϕ(s) tβ(s) + sinϕ(s)nβ(s).

Let κβ(s) be the curvature function of the base curve β(s) and let Tβ(s, u),
Nβ(s, u) be the parallel translates of tβ(s), nβ(s) along the geodesic γLs (u).
The same computations as in §3.1 give the followings:
(a) In E2,

Ls(s, u) =
(
1− (ϕ′(s) + κβ(s))u sinϕ(s)

)
Tβ(s, u)

+ (ϕ′(s) + κβ(s))u cosϕ(s)Nβ(s, u),

Lu(s, u) = cosϕ(s)Tβ(s, u) + sinϕ(s)Nβ(s, u).

(b) In H2,

Ls(s, u) = (cos2 ϕ(s) + coshu sin2 ϕ(s)−(ϕ′(s) + κβ(s)) sinhu sinϕ(s))Tβ(s, u)

+
(
(1− coshu) sinϕ(s) + (ϕ′(s) + κβ(s)) sinhu

)
cosϕ(s)Nβ(s, u),

Lu(s, u) = cosϕ(s)Tβ(s, u) + sinϕ(s)Nβ(s, u).

(c) In S2,

Ls(s, u) = (cos2 ϕ(s) + cosu sin2 ϕ(s)− (ϕ′(s) + κβ(s)) sinu sinϕ(s))Tβ(s, u)

+
(
(1− cosu) sinϕ(s) + (ϕ′(s) + κβ(s)) sinu

)
cosϕ(s)Nβ(s, u),

Lu(s, u) = cosϕ(s)Tβ(s, u) + sinϕ(s)Nβ(s, u).

3.3. Parametrization of the right region

Our observation also gives the following parametrizations R(s, t) of the right
region:

R(s, u) = γRs (u), 0 ≤ s ≤ l, 0 ≤ u ≤ r(s),

where γRs (u) is the geodesic with

γRs (0) = β(s),
dγRs
du

(0) = cos(−ϕ(s)) tβ(s) + sin(−ϕ(s))nβ(s)

= cosϕ(s) tβ(s)− sinϕ(s)nβ(s).

Then the same computations as in §3.1 give the followings:
(a) In E2,

Rs(s, u) =
(
1 + (−ϕ′(s) + κβ(s))u sinϕ(s)

)
Tβ(s, u)

+ (−ϕ′(s) + κβ(s))u cosϕ(s)Nβ(s, u),
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Ru(s, u) = cosϕ(s)Tβ(s, u)− sinϕ(s)Nβ(s, u).

(b) In H2,

Rs(s, u)=(cos2 ϕ(s)+coshu sin2 ϕ(s)+(−ϕ′(s)+κβ(s)) sinhu sinϕ(s))Tβ(s, u)
+
(
(−1 + coshu) sinϕ(s)+(−ϕ′(s)+κβ(s)) sinhu

)
cosϕ(s)Nβ(s, u),

Ru(s, u) = cosϕ(s)Tβ(s, u)− sinϕ(s)Nβ(s, u).

(c) In S2,

Rs(s, u) = (cos2 ϕ(s) + cosu sin2 ϕ(s) + (−ϕ′(s) + κβ(s)) sinϕ(s)) sinuTβ(s, u)

+
(
(−1 + cosu) sinϕ(s) + (−ϕ′(s) + κβ(s)) sinu

)
cosϕ(s)Nβ(s, u),

Ru(s, u) = cosϕ(s)Tβ(s, u)− sinϕ(s)Nβ(s, u).

4. Proof of the theorem

4.1. Proof for E2

The area element of the parametrization A(s, u) of A ⊂ E2 is computed as(
⟨As, As⟩⟨Au, Au⟩ − ⟨As, As⟩2

)1/2
= | sinϕ(s)− (ϕ′(s) + κα(s))u|,

that of the parametrization L(s, u) of the left region as(
⟨Ls, Ls⟩⟨Lu, Lu⟩ − ⟨Ls, Ls⟩2

)1/2
= | sinϕ(s)− (ϕ′(s) + κβ(s))u|

and that of the parametrization R(s, u) of the right region as(
⟨Rs, Rs⟩⟨Ru, Ru⟩ − ⟨Rs, Rs⟩2

)1/2
= | sinϕ(s)− (ϕ′(s)− κβ(s))u|.

Hence the area of the ovaloidal region is∫ l

0

∫ r(s)

0

(
| sinϕ(s)− (ϕ′(s) + κβ(s))u|+ | sinϕ(s)− (ϕ′(s)− κβ(s))u|

)
du ds

and the area of A is∫ l

0

∫ r(s)

0

| sinϕ(s)− (ϕ′(s) + κα(s))u| du ds.

Now, suppose it holds that

(2) sinϕ(s)− (ϕ′(s) + κα(s))u ≥ 0

in the parameter region

0 ≤ s ≤ l, 0 ≤ u ≤ r(s).

Furthermore, if |κβ(s)| ≤ κα(s), we will have

sinϕ(s)− (ϕ′(s) + κβ(s))u ≥ sinϕ(s)− (ϕ′(s) + κα(s))u ≥ 0,

sinϕ(s)− (ϕ′(s)− κβ(s))u ≥ sinϕ(s)− (ϕ′(s) + κα(s))u ≥ 0,
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then the area of the ovaloidal region will be∫ l

0

∫ r(s)

0

(
| sinϕ(s)−(ϕ′(s)+κβ(s))u|+| sinϕ(s)−(ϕ′(s)−κβ(s))u|

)
du ds

=

∫ l

0

∫ r(s)

0

(
sinϕ(s)−(ϕ′(s)+κβ(s))u+sinϕ(s)−(ϕ′(s)−κβ(s))u

)
du ds

= 2

∫ l

0

∫ r(s)

0

(
sinϕ(s)− ϕ′(s)u

)
du ds

which shows that the area of the ovaloidal region is independent of the shape
of the base curve β.

In order to prove (2), take a polar coordinate (r, θ) centered at O and write

α(s) = r(s)
(
cos θ(s), sin θ(s)

)
.

Then we have

dγs
du

(0) = −(cos θ(s), sin θ(s)),(3)

tα(s) = r′(s)
(
cos θ(s), sin θ(s)

)
+ r(s)θ′(s)

(
− sin θ(s), cos θ(s)

)
(4)

and since α(s) is of unit speed, we also have

(5) r′(s)2 + r2(s)θ′(s)2 = 1.

Take a constant vector field e(s) = (α(s); 1, 0) along α(s) parallel to the x axis
and let the oriented angle between e(s) and tα(s) be ψ(s):

ψ(s) = ∠(e(s), tα(s)),

then we have

ψ(s) = θ(s)− ϕ(s) + π

which gives

(6) κα(s) = ψ′(s) = θ′(s)− ϕ′(s).

Note that θ′(s) ≥ 0 since α(s) is a convex curve. We have from (1) and (3), (4)

cosϕ(s) = ⟨tα(s),
dγs
du

(0)⟩ = −r′(s)

and then from (5)

sinϕ(s) = r(s)θ′(s),

which, together with (6), gives

sinϕ(s)− (ϕ′(s) + κα(s))u =
(
r(s)− u

)
θ′(s) ≥ 0

since r(s) ≥ u and θ′(s) ≥ 0. This completes the proof of (2) and the Theorem
for E2.
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4.2. Proof for H2

The area element of the parametrization A(s, u) of A ⊂ H2 is computed as(
⟨As, As⟩⟨Au, Au⟩ − ⟨As, As⟩2

)1/2
= | coshu sinϕ(s)− (ϕ′(s) + κα(s)) sinhu|,

that of the parametrization L(s, u) of the left region as(
⟨Ls, Ls⟩⟨Lu, Lu⟩ − ⟨Ls, Ls⟩2

)1/2
= | coshu sinϕ(s)− (ϕ′(s) + κβ(s)) sinhu|

and that of the parametrization R(s, u) of the right region as(
⟨Rs, Rs⟩⟨Ru, Ru⟩ − ⟨Rs, Rs⟩2

)1/2
= | cosh sinϕ(s)− (ϕ′(s)− κβ(s)) sinhu|.

Hence the area of the ovaloidal region is∫ l

0

∫ r(s)

0

(
| coshu sinϕ(s)−(ϕ′(s)+κβ(s)) sinhu|+| coshu sinϕ(s)−(ϕ′(s)− κβ(s)) sinhu|

)
du ds

and the area of A is∫ l

0

∫ r(s)

0

| coshu sinϕ(s)− (ϕ′(s) + κα(s)) sinhu| du ds.

Now, suppose it holds that

(7) coshu sinϕ(s)− (ϕ′(s) + κα(s)) sinhu ≥ 0

in the parameter region

0 ≤ s ≤ l, 0 ≤ u ≤ r(s).

Furthermore, if |κβ(s)| ≤ κα(s), we will have

coshu sinϕ(s)−(ϕ′(s)+κβ(s)) sinhu ≥ coshu sinϕ(s)−(ϕ′(s)+κα(s)) sinhu ≥ 0,

coshu sinϕ(s)−(ϕ′(s)−κβ(s)) sinhu ≥ coshu sinϕ(s)−(ϕ′(s)+κα(s)) sinhu ≥ 0,

then the area of the ovaloidal region will be∫ l

0

∫ r(s)

0

(
| coshu sinϕ(s)−(ϕ′(s)+κβ(s)) sinhu|+| coshu sinϕ(s)−(ϕ′(s)−κβ(s)) sinhu|

)
du ds

=
∫ l

0

∫ r(s)

0

(
coshu sinϕ(s)−(ϕ′(s)+κβ(s)) sinhu+coshu sinϕ(s)−(ϕ′(s)−κβ(s)) sinhu

)
du ds

= 2

∫ l

0

∫ r(s)

0

(
coshu sinϕ(s)− ϕ′(s) sinhu

)
du ds

which shows that the area of the ovaloidal region in H2 is independent of the
shape of the base curve β.

In order to prove (7), take the geodesic polar coordinate (ρ, θ) centered at
O. Let us write for brevity

∂ρ :=
∂

∂ρ
, ∂θ :=

∂

∂θ
.

We have

⟨∂ρ, ∂ρ⟩ = 1, ⟨∂ρ, ∂θ⟩ = ⟨∂θ, ∂ρ⟩ = 0, ⟨∂θ, ∂θ⟩ = sinh2 ρ
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and

∇∂ρ
∂ρ = 0, ∇∂ρ

∂θ = ∇∂θ
∂ρ =

cosh ρ

sinh ρ
∂θ, ∇∂θ

∂θ = − cosh ρ sinh ρ.

Let α(s) =
(
ρ(s), θ(s)

)
. Then we have

tα(s) = α′(s) = ρ′(s)∂ρ + θ′(s)∂θ,

and since α is of unit speed, we also have

ρ′(s)2 + θ′(s)2 sinh2 ρ(s) = 1.

Let e(s) be a parallel vector field along α(s) with ⟨e(s), e(s)⟩ = 1 and let

ϵ1(s) = ∠
(
e(s), ∂ρ(s)

)
,

ϵ2(s) = ∠
(
∂ρ(s), tα(s)

)
.

Then we have

ϵ2(s) + ϕ(s) = π, ϕ′(s) = −ϵ′2(s)
and

cos ϵ2(s) = ⟨∂ρ(s), tα(s)⟩ = ρ′(s).

Since ∠
(
e(s), tα(s)

)
= ϵ1(s) + ϵ2(s), we have

κα(s) =
d

ds
∠
(
e(s), tα(s)

)
= ϵ′1(s) + ϵ′2(s)

and hence

ϕ′(s) + κα(s) = ϵ′1(s).

Since ϵ1(s) = ∠
(
e(s), ∂ρ(s)

)
, we have

cos ϵ1(s) = ⟨e(s), ∂ρ⟩,

∠
(
e(s), ∂θ(s)

)
= ϵ1(s) +

π

2
,

⟨e(s), ∂θ(s)⟩ = sinh ρ(s) cos(ϵ1(s) + π/2) = − sinh ρ(s) sin ϵ1(s).

Differentiating the equation cos ϵ1(s) = ⟨e(s), ∂ρ⟩, we then have

−ϵ′1(s) sin ϵ1(s) =
d

ds
⟨e(s), ∂ρ⟩ = ⟨e(s),∇tα(s)∂ρ⟩

= ⟨e(s), ρ′(s)∇∂ρ∂ρ + θ′(s)∇∂θ
∂ρ⟩

= θ′(s)
cosh ρ(s)

sinh ρ(s)
⟨e(s), ∂θ⟩ = −θ′(s) cosh ρ(s)

sinh ρ(s)
sinh ρ(s) sin ϵ1(s)

= −θ′(s) cosh ρ(s) sin ϵ1(s),

which gives

ϵ′1(s) = θ′(s) cosh ρ(s)

and we have

(8) ϕ′(s) + κα(s) = θ′(s) cosh ρ(s).
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On the other hand, since ϕ(s) = π − ϵ2(s), we have

(9) sinϕ(s) = sin ϵ2(s) =
√
1− cos2 ϵ2(s) =

√
1− ρ′(s)2 = θ′(s) sinh ρ(s).

Now we have from(8) and (9)

coshu sinϕ(s)− (ϕ′(s) + κα(s)) sinhu

= θ′(s)(coshu sinh ρ(s)− sinhu cosh ρ(s))

= θ′(s) sinh(ρ(s)− u) ≥ 0

since ρ(s) ≥ u, which completes the proof of (7) and the theorem for H2.

4.3. Proof for S2

The area element of the parametrization A(s, u) of A ⊂ S2 is computed as(
⟨As, As⟩⟨Au, Au⟩ − ⟨As, As⟩2

)1/2
= | cosu sinϕ(s)− (ϕ′(s) + κα(s)) sinu|,

that of the parametrization L(s, u) of the left region as(
⟨Ls, Ls⟩⟨Lu, Lu⟩ − ⟨Ls, Ls⟩2

)1/2
= | cosu sinϕ(s)− (ϕ′(s) + κβ(s)) sinu|

and that of the parametrization R(s, u) of the right region as(
⟨Rs, Rs⟩⟨Ru, Ru⟩ − ⟨Rs, Rs⟩2

)1/2
= | cos sinϕ(s)− (ϕ′(s)− κβ(s)) sinu|.

Hence the area of the ovaloidal region is∫ l

0

∫ r(s)

0

(
| cosu sinϕ(s)− (ϕ′(s) + κβ(s)) sinu|+ | cosu sinϕ(s)− (ϕ′(s)− κβ(s)) sinu|

)
du ds

and the area of A is∫ l

0

∫ r(s)

0

| cosu sinϕ(s)− (ϕ′(s) + κα(s)) sinu| du ds.

Now, suppose it holds that

(10) cosu sinϕ(s)− (ϕ′(s) + κα(s)) sinu ≥ 0

in the parameter region

0 ≤ s ≤ l, 0 ≤ u ≤ r(s).

Furthermore, if |κβ(s)| ≤ κα(s), we will have

cosu sinϕ(s)− (ϕ′(s) + κβ(s)) sinu ≥ cosu sinϕ(s)− (ϕ′(s) + κα(s)) sinu ≥ 0,

cosu sinϕ(s)− (ϕ′(s)− κβ(s)) sinu ≥ cosu sinϕ(s)− (ϕ′(s) + κα(s)) sinu ≥ 0,

then the area of the ovaloidal region will be∫ l

0

∫ r(s)

0

(
| cosu sinϕ(s)−(ϕ′(s)+κβ(s)) sinu|+| cosu sinϕ(s)−(ϕ′(s)−κβ(s)) sinu|

)
du ds

=
∫ l

0

∫ r(s)

0

(
cosu sinϕ(s)− (ϕ′(s) + κβ(s)) sinu+ cosu sinϕ(s)− (ϕ′(s)− κβ(s)) sinu

)
du ds
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= 2

∫ l

0

∫ r(s)

0

(
cosu sinϕ(s)− ϕ′(s) sinu

)
du ds

which shows that the area of the ovaloidal region in S2 is independent of the
shape of the base curve β.

In order to prove (10), take the geodesic polar coordinate (ρ, θ) centered at
O. Let us write for brevity

∂ρ :=
∂

∂ρ
, ∂θ :=

∂

∂θ
.

We have

⟨∂ρ, ∂ρ⟩ = 1, ⟨∂ρ, ∂θ⟩ = ⟨∂θ, ∂ρ⟩ = 0, ⟨∂θ, ∂θ⟩ = sin2 ρ

and

∇∂ρ
∂ρ = 0, ∇∂ρ

∂θ = ∇∂θ
∂ρ =

cos ρ

sin ρ
∂θ, ∇∂θ

∂θ = − cos ρ sin ρ.

Let α(s) =
(
ρ(s), θ(s)

)
. Then we have

tα(s) = α′(s) = ρ′(s)∂ρ + θ′(s)∂θ,

and since α is of unit speed, we also have

ρ′(s)2 + θ′(s)2 sin2 ρ(s) = 1.

Let e(s) be a parallel vector field along α(s) with ⟨e(s), e(s)⟩ = 1 and let

ϵ1(s) = ∠
(
e(s), ∂ρ(s)

)
,

ϵ2(s) = ∠
(
∂ρ(s), tα(s)

)
.

Then we have
ϵ2(s) + ϕ(s) = π, ϕ′(s) = −ϵ′2(s)

and
cos ϵ2(s) = ⟨

(
∂ρ(s), tα(s)

)
⟩ = ρ′(s).

Since ∠
(
e(s), tα(s)

)
= ϵ1(s) + ϵ2(s), we have

κα(s) =
d

ds
∠
(
e(s), tα(s)

)
= ϵ′1(s) + ϵ′2(s)

and hence
ϕ′(s) + κα(s) = ϵ′1(s).

Since ϵ1(s) = ∠
(
e(s), ∂ρ(s)

)
, we have

cos ϵ1(s) = ⟨e(s), ∂ρ⟩,

∠
(
e(s), ∂θ(s)

)
= ϵ1(s) +

π

2
,

⟨e(s), ∂θ(s)⟩ = sin ρ(s) cos(ϵ1(s) + π/2) = − sin ρ(s) sin ϵ1(s).

Differentiating the equation cos ϵ1(s) = ⟨e(s), ∂ρ⟩, we then have

−ϵ′1(s) sin ϵ1(s) =
d

ds
⟨e(s), ∂ρ⟩ = ⟨e(s),∇tα(s)∂ρ⟩
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= ⟨e(s), ρ′(s)∇∂ρ
∂ρ + θ′(s)∇∂θ

∂ρ⟩

= θ′(s)
cos ρ(s)

sin ρ(s)
⟨e(s), ∂θ⟩

= −θ′(s) cos ρ(s)
sin ρ(s)

sin ρ(s) sin ϵ1(s)

= −θ′(s) cos ρ(s) sin ϵ1(s),
which gives

ϵ′1(s) = θ′(s) cos ρ(s)

and we have

(11) ϕ′(s) + κα(s) = θ′(s) cos ρ(s).

On the other hand, since ϕ(s) = π − ϵ2(s), we have

(12) sinϕ(s) = sin ϵ2(s) =
√
1− cos2 ϵ2(s) =

√
1− ρ′(s)2 = θ′(s) sin ρ(s).

Now we have from(11) and (12)

cosu sinϕ(s)− (ϕ′(s) + κα(s)) sinu

= θ′(s)(cosu sinh ρ(s)− sinu cosh ρ(s))

= θ′(s) sin(ρ(s)− u) ≥ 0

since ρ(s) ≥ u, which completes the proof of (10) and the theorem for S2.

5. A remark

The curvature condition in the theorem guarantees that a convex body and
the base curve do not intersect near the initial tangent point. However, we are
curious if there is an assurance that, during the rolling of the convex body, the
convex body and the base curve will not intersect at locations away from the
tangent point.
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