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INVARIANCE OF THE AREA OF OVALOIDS
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ABSTRACT. Consider a two dimensional smooth convex body with a
marked point on the boundary of it, sitting tangentially at the marked
point over a base curve in E2, H? or S? and the image of this body by
the reflection with respect to the tangent line of the base curve at the
marked point. When we roll these two bodies simultaneously along the
base curve, the trajectories of the marked point bound a closed region.
We show that the area of the closed region is independent of the shape of
the base curve if the base curve is not highly curved with respect to the
boundary curve of the convex body.

1. Introduction

Suppose a two dimensional convex body A in the Euclidean plane E2? whose
boundary 0A is a smooth closed curve rolls without slipping along a curve,
called the base curve, which is not necessarily a geodesic line. Let us call the
curve traced by a marked point O on 0A as A rolls along the base curve an
ovaloid. There are two ovaloids, each of which is drawn on one side of the base
curve. Let us call one of these ovaloid as the left ovaloid and the other right
ovaloid over the base curve. If A is initially sitting tangentially at the marked
point O over a base curve, then these two ovaloids, that is, the left ovaloid
together with the right ovaloid make a closed curve. Let us call the region
enclosed by these two ovaloids as the ovaloidal region over the base curve.

When the convex body is a round disk, it was shown in [1] and [2] that the
area of the ovaloidal region is independent of the shape of the base curve if the
base curve is not highly curved with respect to the boundary circle of the disk.

One can think of the ovaloidal region in the hyperbolic plane H? of the
curvature —1 or in the sphere S? of the curvature 1. In this article, we show
that the area of the ovaloidal region is independent of the shape of the base
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curve if the base curve is not highly curved with respect to the boundary curve
OA of the convex body A, which is not necessarily a disk, not only in E? but
in H? or in S2.

Theorem 1.1. Let a(s) be the arclength parametrization of OA and 5(s) the

arclength parametrization of the base curve such that a(0) = O = £(0). Let
Ka(s) and kg(s) be their signed curvature functions. If

|kp(s)] < Kals),

then the area of the ovaloidal region over the base curve B in E2, H? or in S?
is independent of the shape of the base curve (.

2. An observation

For the convex body A with O € A and for every point P € dA consider
the geodesic line segment OP. Then, since A is convex, these geodesic line
segments fill up without intersection the convex body A:

A= | oP.
PcoA
Assume the convex body A lies tangent at O on the base curve. We roll a
convex body A along a base curve to get an ovaloid, which is the trajectory of
the marked point O € d.A. While the convex body rolls along the base curve,
the collection of line segments forming the convex body unfolds to another
collection of line segments, one of whose end point lies on the ovaloid and the
other on the base curve to form the region bounded by the ovaloid and the base
curve.
Let @ € 0A be the point such that the arclength from O to @ along 0A is
q. Consider the directed geodesic line segment QO. Then both the length |Q®|
and the angle formed by the line tangent to d.A at @ and the geodesic line
segment QO are functions of the arclength q. Now suppose when rolling A,
the point @ touches the base curve at Q' and at that moment, the poi’mi+ O is
moved to the point O’ of the ovaloid. Then the geodesic line segments Q'O fill
up the region bounded by the ovaloid and the base curve without intersection.
Moreover we see that

e The arclength along the base curve from O to ' is the same as the
arclengh from O to @Q along d.A.

-
e The length of the directed line segment 'O’ is the same as that of the
directed line segment QO :

—
€'0'| = Q0]
e The angle formed by the line tangent to the base curve at Q' and the

directed line segment 'O’ is the same as the angle formed by the line
tangent to 04 at @ and the directed line segment QO.
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3. Parametrizations of A, left and right regions
3.1. Parametrization of A

Let the length of A be I and «a(s) be the arclength parametrization of 9.4
such that

a(0)=al)=0
and oriented so that 14 (s) > 0. Let v, (u) be the unit-speed geodesic connecting
the point a(s) = v5(0) and O whose length is r(s). Let t,(s), n,(s) be the unit
tangent vector field and the unit normal vector field of a(s) and ¢(s) be the
oriented angle between t,(s) and %(O):

m o) = 2 (1al9). 20
Then we have
31(0) = ofs),
%02 0) = c0s9(5) bals) + 500 6(5) 1 (5).

We can parametrize A as

A(s,u) =vs(u), 0<s<I, 0<u<r(s).

Note that
0A dys .
5 (5:0) = I (0) = cos 6(s) ta(s) + sin d(s) na ().
Note also that A,(s,u) = 22(s,u) is the Jacobi field J,(u) along the geodesic
vs(u) whose initial data are
ds(0 da
Js(0) = Ay(s,0) = VCT() = = =ta(s),

DJ d D oA D 0A

T (0) = = . As(s,u) = %g(s,O) = %%(5,0)
= 2 (c0s6(5) ta(s) + sin 9(s) na(s)
= —¢'(s)sinP(s) to(s) + cos d(s) t,,(s) + ¢'(s) cos d(s) ny(s)
+ sin ¢(s) nl, (s)
= —¢'(s)sin@(s) ta(s) + Ka(s) cos d(s) na(s) + ¢'(s) cos ¢(s) na(s)
— Ko (S)sing(s) to(s)
= (¢’(s) + Ko (s)) ( —sin@(s) to(s) + cos d(s) na(s))
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If we decompose Js(0) = t,(s) into tangential and normal components to

%(0), we have from (1) that the tangential component is

cos ¢(s) CZLS (0) = cos ¢(s)(cos @(s) ta(s) + sinP(s) na(s))

and the normal component is

Jo(0) = c056(5) T2(0) = ta(s) ~ c05.0(s) (€0 9(s) ta(s) + 5in 6(5) ma ()

= sin ¢(s) (sin ¢(s) ta(s) — cos ¢(s) na(s)).

One can see that ZZ=(0) is normal to T(O)

Let T, (s,u), Nu(s,u) be the parallel translates of t,(s), n,(s) along the
geodesic v, (u). Then we have the followings:
(a) For A C E?,

As(s,u) = Js(u)

= cos @(s)(cos P(s) Ta(s,u) + sin(s) Na(s,u))
(

+ sin ¢ s)(sind)(s) T, (s )fcosqb( ) a(S))

(¢’(s) + Ka(s )(— sin ¢(s) To (s, u) + cos ¢(s) N, (s,u))u
= (1= (¢/(s) + Ka(s))usin (s ))T (s, u)

+(¢'(

s) + Ka(s))ucos ¢(s) Na(s, u),
Au(s,u) = cos d(8) Ta(s,u) + sin ¢(s) Nu(s, u).
(b) For A C H?,
As(s,u) = Js(u)
= cos ¢(s)(cos ¢(s) Ta(s,u) + sin¢p(s) Nuo(s,u))
+ sin ¢(s)(sin ¢(s) Tu (s, u) — cos ¢(s) Ny (s, u)) coshu
+(¢/(s) + Fa(s)) (= sind(s) Ta(s, u) + cos ¢(s) Na(s, u)) sinhu
= (cos® ¢(s)+coshusin® ¢(s) — (¢'(s)+kqa(s)) sinhusin ¢(s)) Tn(s, u)
+ ((1 — coshu)sin@(s) + (¢'(s) + Ka(s)) sinhu) cos ¢(s) Nu (s, u),
Ay(s,u) = cos d(s) Ta(s,u) + sing(s) Nu(s, u).
(c) For A C S?,
As = cos @(s)(cos (s) Ti(s,u) + sin ¢(s) Ny (s, u))
+ sin @(s)(sin @(s) To(s,u) — cos @(s) Nu(s,u)) cosu
+(¢'(8) + Ka(8))(—sin¢(s) Tu(s,u) + cos ¢(s) No(s,u))sinu
= (0052 #(5) 4 cosusin® ¢(s) — (¢ (s) + kq(s)) sinusin (s)) Ta(s,u)
((1 — cosu)sin @(s) + (¢'(s) + ka(s)) sin u) cos ¢(s) Nu(s,u),
Ay = cos@(s) T (s, u) + sin ¢(s) Ny (s, u).
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3.2. Parametrization of the left region

Let tg(s),ng(s) be the unit tangent vector field and the unit normal vector
field of the base curve 8(s). Our observation gives the following parametriza-
tions L(s,t) of the left region:

L(s,u) =7F(u), 0<s<l, 0<u<r(s),
where vXs(u) is the geodesic with
L ¥ .
TH0) = Bls), D2 (0) = coso(s) by (s) + sin B(s) ma ).
Let xg(s) be the curvature function of the base curve 5(s) and let T;s(s,u),
Ng(s,u) be the parallel translates of ts(s), ng(s) along the geodesic vZ(u).
The same computations as in §3.1 give the followings:

(a) In E2,
Ly(s,u) = (1= (¢'(s) + ks (s))using(s)) Tp(s, u)
+(¢/(s) + r(s))ucos ¢(s) N (s, u),
L, (s,u) = cos@(s) Ta(s,u) + sin¢(s) Ng(s,u).
(b) In HZ,

Lg(s,u) = (cos? ¢(s) + coshusin® ¢(s) —(¢'(s) + rp(s)) sinhusin ¢(s)) Ts(s, u)
+ ((1 — coshu)sin ¢(s) + (¢'(s) + ra(s)) sinhu) cos ¢(s) N (s, u),
L, (s,u) = cos¢(s) Ta(s,u) +sin¢(s) Ng(s, u).
(c) In S?,
L(s,u) = (cos? ¢(s) + cosusin® ¢(s) — (¢'(s) + rs(s)) sinusin ¢(s)) Ts(s,u)
+ ((1 — cosu)sin@(s) + (¢'(s) + rp(s)) sinu) cos ¢(s) Na(s, u),
L, (s,u) = cos¢(s) Tz(s,u) + sin¢(s) Ng(s, u).
3.3. Parametrization of the right region

Our observation also gives the following parametrizations R(s,t) of the right
region:
R(s,u) =7 (), 0<s<1 0<u<r(s),
where vE(u) is the geodesic with

R N d'Yf _ _ s
AT(0) = B5). D (0) = cos(~6(5)) t(s) + sin(~o()) m(s)

= cos ¢(s) t(s) — sin¢(s) ng(s).
Then the same computations as in §3.1 give the followings:
(a) In E2,

Ry(s,u) = (1+ (—=¢'(s) + rs(s))usin ¢(s)) Ts(s, u)
+ (=¢'(s) + rp(s))ucos ¢(s) Np(s,u),
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R, (s,u) = cos ¢(s) T(s,u) —sind(s) Na(s,u).
(b) In HZ2,
Ry(s,u)=(cos® ¢(s)+coshusin® (s)+(—¢'(s)+rp(s)) sinhusin ¢(s)) Ts(s, u)
+ (=1 + coshu) sin ¢(s)+(—¢'(s)+rp(s)) sinh w) cos ¢(s) Np (s, u),
R, (s,u) = cos ¢(s) T(s,u) —sind(s) Na(s,u).
(c) In S2,
Rq(s,u) = (cos® ¢(s) + cosusin® ¢(s) + (—¢'(s) + k(s)) sin ¢(s)) sinu T (s, u)
+ ((=1+ cosu)sin¢(s) + (—¢'(s) + rp(s)) sinu) cos ¢(s)Ng(s, u),
R, (s,u) = cos ¢(s) T(s,u) —sinp(s) Na(s,u).

—

4. Proof of the theorem
4.1. Proof for E?
The area element of the parametrization A(s,u) of A C E? is computed as
(s, Au){Au, Au) = (45, 4)*) 77 = [sin(s) = (¢(s) + ra(s))ul,
that of the parametrization L(s,u) of the left region as
(<L87 L3><Lu, Lu> - <L57 L8>2) = |Sian)(8) - (¢l(8) + ’iﬂ(s))u|

and that of the parametrization R(s,u) of the right region as

= [sing(s) — (¢(s) — rp(s))ul-

1/2
1/2

((Rs, Rs)(Ru, Ry) — <RS,RS)2)1/2

Hence the area of the ovaloidal region is

I pr(s)
/0 / (Isin(s) — (8(s) + ma(s))ul + | sind(s) — (&' (s) — ra(s))ul) duds

and the area of A is

/Ol /OT(S) |sin@(s) — (¢'(s) + ka(s))u| duds.
Now, suppose it holds that
2) Sin 6(5) — (¢/(5) + Ka(s))u > 0
in the parameter region
0<s<l, 0<u<r(s).

Furthermore, if |k3(s)| < kq(s), we will have

sing(s) — (¢'(s) + rg(s))u > sin@(s) — (¢'(s) + Ka(s))u > 0,

sing(s) — (¢'(s) — kp(s))u > sing(s) — (¢'(s) + Ka(s))u > 0,
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then the area of the ovaloidal region will be

// (sin 6(s)— (& (5) + s (s))ul +| sin b(s) — (&' (5) — rp(s))u]) dhu ds
// (sing(s)—(¢'(s)+ra(s))utsing(s)—(¢'(s)—rp(s))u) duds

= 2/0 /OT(S (sing(s) — ¢'(s)u) duds

which shows that the area of the ovaloidal region is independent of the shape
of the base curve £5.
In order to prove (2), take a polar coordinate (r,6) centered at O and write

a(s) =7r(s)(cos(s),sinf(s)).

Then we have

(3) Gfgj (0) = —(cos O(s),sin b(s)),

(4) ta(s) =1'(s)(cosO(s),sinb(s)) +r(s)0 (s)( — sinb(s), cosb(s))
and since a(s) is of unit speed, we also have
(5) 7 (s)? +1r%(s)0'(s)? = 1.

Take a constant vector field e(s) = (a(s); 1,0) along a(s) parallel to the = axis
and let the oriented angle between e(s) and t,(s) be ¥(s):

'(/)(3) = Z(e(s)v ta(s))7

then we have

which gives

(6) Ka(s) =1'(s) =0'(s) — ¢'(s).

Note that 6’(s) > 0 since a(s) is a convex curve. We have from (1) and (3), (4)

€03 6(5) = (ta(s), 1 (0)) = (5

and then from (5)
sin6(s) = r(5)0(s),
which, together with (6), gives
Sin 6(s) — (&'(5) + K ())u = (r(s) — u)0'(s) > 0

since r(s) > w and 6’(s) > 0. This completes the proof of (2) and the Theorem
for E2.
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4.2. Proof for H?
The area element of the parametrization A(s,u) of A C H? is computed as
((Agy A ( Ay, Ay) — (Ag, AD?)Y? = | coshusin g(s) — (¢/(s) + Ka(s)) sinhul,
that of the parametrization L(s,u) of the left region as
((Ls, Ls)(Lu, Lu) — (Ls, Ls)*) '~ = | coshusin ¢(s) — (¢/(s) + ka(s)) sinhul
and that of the parametrization R(s,u) of the right region as
((Rs, Rs)(Ru, Ru) — (Rs, Rs)?) """ = | coshsin ¢(s) — (¢/(s) — rp(s)) sinhul.

Hence the area of the ovaloidal region is

1/2

1/2

L pr(s)
/0 /0 (\ coshusin ¢(s)—(¢'(s)+rs(s)) sinh u|+| coshusin ¢(s) —(¢'(s) — kg(s)) sinh u\) duds

and the area of A is

I pr(s)
/ / | coshusin ¢(s) — (¢'(s) + Ka(s)) sinhu| duds.
0 Jo
Now, suppose it holds that
(7) coshusin ¢(s) — (¢'(s) + Ka(s))sinhu >0
in the parameter region
0<s<l, 0<u<r(s).
Furthermore, if |k3(s)| < ka(s), we will have
coshusin ¢(s)—(¢'(s)+kp(s))sinhu > coshusin ¢(s)—(¢'(s)+ra(s))sinhu > 0,
coshusin ¢(s)—(¢'(s)—kp(s)) sinhu > coshusin ¢(s)—(¢'(s)+ka(s))sinhu > 0,

then the area of the ovaloidal region will be
L pr(s)
/ / (| coshusin ¢(s)—(¢'(s)+ra(s)) sinhu|+| coshusin¢(s)— (¢ (s)—rs(s)) sinhu|) duds
0 Jo
ol pr(s)
= / / (coshusin ¢(s)—(¢'(s)+#rp(s)) sinh u+coshusin ¢(s)— (¢’ (s) —r(s)) sinhu) du ds
Jo Jo

L pr(s)
= 2/ / (coshusin ¢(s) — ¢'(s)sinhu) duds
0 Jo

which shows that the area of the ovaloidal region in H? is independent of the
shape of the base curve f.
In order to prove (7), take the geodesic polar coordinate (p, ) centered at
O. Let us write for brevity
0 0
0y :=—, 0Op:=—.
A P T
We have

<8P76P> =1, <8Pv 89> = <697 ap> =0, <897 80> = Sinh2 1%
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and
cosh p .
Vo, 0, =0, V5,00 =Vp,0, = m@g, V,0p = — cosh psinh p.

Let a(s) = (p(s),0(s)). Then we have
ta(s) =a/(s) = p'(s)9, + ' (s)0,
and since « is of unit speed, we also have
p'(s)? +6'(s)*sinh? p(s) = 1.
Let e(s) be a parallel vector field along a(s) with (e(s),e(s)) =1 and let
1(s) = Z(e(s), 0y(5)),
e2(s) = Z(0,(s), ta(s)).
Then we have
ea(s) +o(s) =m,  ¢(s) = —€5(s)

and

cose2(5) = (By(5), ta(s)) = /().
Since Z(e(s),ta(s)) = €1(s) + €2(s), we have

pa(3) = 2 (0(5), als)) = €h(5) + €h(5)

and hence
¢'(s) + Ka(s) = €1(s).
Since € (s) = Z(e(s),d,(s)), we have

)
cos 61(8) (e ( )
Z(e(s): 9o(s)) =

(e(s), 89(3)} = sinh p( ) cos(e1(s) +m/2) = —sinh p(s) sin e (s).

Differentiating the equation cose;(s) = (e(s),d,), we then have

e (s)siner(s) = L e(),8,) = (e(5), Ve (50)

o)
Ty

ds
= (e(s),0'(5)Va,0, + 0'(s)Va,0p)
=0'(s) ::E%(e(s), D) = —0'(s) m sinh p(s) sin e (s)

—0'(s) cosh p(s) sin€;(s),

which gives

and we have

(8) @' () + Ka(s) = 0'(s) cosh p(s).
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On the other hand, since ¢(s) = 7 — ea(s), we have
(9) sing(s) = sinex(s) = /1 — cos? ex(s) = /1 — p/(5)2 = #'(s) sinh p(s).
Now we have from(8) and (9)
coshusin ¢(s) — (¢'(s) + Ka(s)) sinhu
= 60'(s)(cosh usinh p(s) — sinh u cosh p(s))
= 0'(s) sinh(p(s) —u) >0

since p(s) > u, which completes the proof of (7) and the theorem for H?2.

4.3. Proof for S?
The area element of the parametrization A(s,u) of A C S? is computed as

1/2

(Aes A Aus A) = (A A = [ cosusing(s) — (&/(s) + ra(s)) sinul,

that of the parametrization L(s,u) of the left region as

(Lo L)L L) = (L, L))

= |cosusing(s) — (¢'(s) + kp(s)) sinul
and that of the parametrization R(s,u) of the right region as

((Rs, Ra)(Ru, Ru) — (Ra, Re)?)"? = | cossin ¢(s) — (¢/(s) — rs(s)) sinul.
Hence the area of the ovaloidal region is

ol pr(s)
/o /0 (| cosusing(s) — (¢'(s) + kp(s))sinu| + | cosusin ¢(s) — (¢'(s) — k(s)) sinu|) duds

and the area of A is

l pr(s)
/ / | cosusing(s) — (¢'(s) + Ka(s)) sinu| duds.
0 Jo
Now, suppose it holds that
(10) cosusin@(s) — (¢'(s) + Kals))sinu >0
in the parameter region
0<s<l, 0<u<r(s).

Furthermore, if |kg(s)| < kq(s), we will have
cosusin¢(s) — (¢'(s) + rp(s)
cosusing(s) — (¢'(s) — kp(s)

then the area of the ovaloidal region will be

sinu > cosusing(s) — (¢'(s) + ka(s))sinu > 0,
sinu > cosusing(s) — (¢'(s) + ka(s))sinu > 0,

— —

Lopr(s)
/0 /0 (| cosusin @(s)— (¢’ (s)+rp(s)) sinu|+| cosusin ¢(s)— (¢’ (s) —rg(s)) sinul) duds

U pr(s)
= /0 /0 (cosusing(s) — (¢'(s) + ra(s)) sinu + cosusin ¢(s) — (¢'(s) — ka(s)) sinu) duds
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L pr(s)
= 2/0 /0 (cosusing(s) — ¢'(s) sinu) duds

which shows that the area of the ovaloidal region in S? is independent of the
shape of the base curve g.

In order to prove (10), take the geodesic polar coordinate (p, ) centered at
O. Let us write for brevity

0 0
8p . 87p7 89 .— %
We have
<8p,6p> = 1, <8p,89> = <89,8p> = 0, <39,(9.9> = sin2 1%

and

C?S pag, V,0p = — cos psin p.
sin p

Vapap =0, Vap@g = Vagap =

Let a(s) = (p(s),0(s)). Then we have
to(s) =a/(s) = p'(s)9, + ' (s)0,
and since « is of unit speed, we also have
0 (5)% 4 6'(s)?sin? p(s) = 1.
Let e(s) be a parallel vector field along «(s) with {e(s),e(s)) =1 and let
c1(s) = Z(e(s),0,(s)),
€2(s) = £(0,(s), ta(s)).
Then we have
ea(s) + ¢(s) =m,  ¢(s) = —ex(s)
and
cosa(s) = ((3y(5), ta())) = 0/(5).
Since Z(e(s),ta(s)) = €1(s) + €2(s), we have

and hence

Since €(s) = Z(e(s),d,(s)), we have
coser(s) = (e(s),0p),

£(e(s),00(s)) = e1(s) + 5.

(e(s),0p(s)) = sin p(s) cos(e1(s) + m/2) = —sin p(s) sine;(s).
Differentiating the equation cose;(s) = (e(s),d,), we then have
d

—ci(s)siner(s) = —-{e(s), ) = (e(s), Vi, (5)p)
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= (e(s),'(5)Vo,0, +0'(5)Va,0,)
g cosp(s)
—w@mm8u>%>

)
sp(s) :
0 (s ) smp(s) sin p(s) sin €1 (s)
= —0'(s) cos p(s)sine (s),
which gives
€, () = 0/(5) cos p(s)

and we have

(11) 8(5) + ra(s) = 0/(5) cos p(s).
On the other hand, since ¢(s) =7 — 62(8) we have
(12)  sing(s) =siney(s) = /1 — cosZ ex(s) = /1 — p'(5)2 = #'(s) sin p(s).

Now we have from(11) and (12)
cosusing(s) — (¢'(s) + ka(s))sinu
= ¢'(s)(cosusinh p(s) — sinu cosh p(s))
= 0'(s)sin(p(s) —u) >0
since p(s) > u, which completes the proof of (10) and the theorem for S2.

5. A remark

The curvature condition in the theorem guarantees that a convex body and
the base curve do not intersect near the initial tangent point. However, we are
curious if there is an assurance that, during the rolling of the convex body, the
convex body and the base curve will not intersect at locations away from the
tangent point.
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