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A NECESSARY AND SUFFICIENT CONDITION FOR THE

EXISTENCE OF INVARIANT GIBBS MEASURES

Minkyu Kim

Abstract. In this paper, we study a relation between the existence of

invariant Gibbs measures and the balanced property of subshifts. We
show that a subshift X has an invariant Gibbs measure for f ∈ C (X,R)
if and only if it is balanced with respect to f .

1. Introduction

Let X be a subshift and let f be a real-valued continuous function from X
to R. Then a measure µ on X is called a Gibbs measure for f if there exist
c ≥ 1 and P ∈ R such that for every n ∈ N, w ∈ Bn(X), and x ∈ [w]

c−1 ≤ µ([w]) exp (nP )

expSnf(x)
≤ c,

where Snf(x) =
∑n−1

i=0 f
(
σi(x)

)
and [w] is a cylinder.

It is well known that if X is a mixing shift of finite type and f is a Hölder
continuous function from X to R, then there exists a unique invariant Gibbs
measure µ for f . This invariant Gibbs measure is a unique equilibrium state
(Definition 2.6) for f and gives rise to a Bernoulli shift [6]. For the case where
X is a subshift with the specification property (Definition 2.2) and f is a
function in the Bowen class Bow(X) (Definition 3.3), there exists a unique
invariant Gibbs measure for f . Moreover, it is a unique equilibrium state for
f [5]. Walters showed that if X is a mixing shift of finite type and f is a
Bowen function, then a unique invariant Gibbs measure µ for f gives rise to a
Bernoulli shift [13].

Let {fn} be a sequence of functions from X to R. We call the sequence an
almost additive sequence if there exists c > 0 such that for every m,n ∈ N and
x ∈ X we have

−c+ fm(x) + fn (σ
m(x)) ≤ fm+n(x) ≤ c+ fm(x) + fn (σ

m(x)) .
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The sequence has a bounded variation if

sup
n∈N

{|fn(x)− fn(y)| : x0x1 · · ·xn−1 = y0y1 · · · yn−1} < ∞.

It is known that if {fn} is an almost additive sequence with bounded variation
on a mixing shift of finite type X, then there exists a unique equilibrium state
µ with the Gibbs property, i.e., for µ there exist c ≥ 1 and P ∈ R such that for
every n ∈ N, w ∈ Bn(X), and x ∈ [w]

c−1 ≤ µ ([w]) exp (nP )

exp fn(x)
≤ c.

Moreover, µ is mixing [2, 3].
There are literature on the Gibbs measures on shifts of finite type over an

infinite alphabet [10,11].
In Section 2, we give basic definitions and notions on symbolic dynamics.

For more details, we refer the reader to [9].
In Section 3, we discuss the existence of the invariant Gibbs measures. Ex-

istence of invariant Gibbs measures do not give much information outside the
specification property. Beyond the specification property, it has been shown
that a subshift X has a Gibbs measure for f = 0 if and only if it has the right
balanced property with respect to f = 0 (Theorem 3.14 in [1]). The constructed
measure in the proof of the theorem, however, need not be invariant (Theorem
3.7 and Theorem 3.14). Since one is more interested in invariant measures on
dynamical systems, we investigate a necessary and sufficient condition for the
existence of invariant Gibbs measures for f = 0. We define boundedly super-
multiplicative property (Definition 3.4) and balanced property (Definition 3.5)
for real-valued continuous functions on subshifts. We show that a subshift X
has a measure of maximal entropy with the Gibbs property if and only if it has
the balanced property with respect to f = 0 (Corollary 3.15), and extend this
result for real-valued continuous functions on X (Theorem 3.14).

2. Preliminary

We recall some definitions which are relevant in Section 3. A finite set
with the discrete topology, denoted by A, is called an alphabet and an ele-
ment of A is called a symbol or letter. The collection of bi-infinite sequences
of symbols from A is called the full A-shift and denoted by AZ, i.e., AZ =
{x = (· · ·x−1x0x1 · · · ) |xi ∈ A, i ∈ Z}. It is a compact and metrizable space
with respect to the product topology. Together with the shift map, denoted
by σ and defined by σ (x)i = xi+1, it is regarded as a topological dynamical
system. A σ-invariant closed subset X of AZ is called a subshift.

A block or word is a finite sequence of symbols in A and the length of a
word u, denoted by |u|, is the number of symbols it contains. For example, the
length |u| of u = aabab is 5. The unique word of length 0 is the empty word
denoted by ϵ. For n ∈ N∪ {0}, an n-word is a word of length n. For a word u,
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a word u′ is a factor or subword of u, denoted by u′ ≺ u, if there exist words v
and w such that u = vu′w, a prefix if there exists a word w such that u = u′w,
and a suffix if there exists a word v such that u = vu′. For a word u and n ∈ N,
denote n-times concatenation of u by un. For x ∈ AZ and i ≤ j ∈ Z, we denote
the word of coordinates in x from i to j by

x[i,j] = xixi+1 · · ·xj .

If X is a subshift, we denote by Bn(X) the set of all words of length n appearing
in points in X and B(X) =

⋃
n≥0 Bn(X) is called the language of X. For u ∈

Bn(X), the cylinder u, denoted by [u], is
{
x ∈ X |x[0,n) = x0x1 · · ·xn−1 = u

}
.

It is open and closed in X.

Definition 2.1. Let X be a subshift, let u be a word in B(X), and let n be
a nonnegative integer. A word v is called an n-follower of u if |v| = n and
uv ∈ B(X) and the n-follower set Fn(u) of u is the set of all n-followers of u.
A word w is called an n-predecessor of u if |w| = n and wu ∈ B(X) and the
n-predecessor set Pn(u) of u is the set of all n-predecessors of u.

A subshift X is irreducible if for all u, v ∈ B(X), there exists a word w such
that uwv ∈ B(X).

Definition 2.2. Let X be a subshift. We say that X has the specification
property [4] if there exists a nonnegative integer N such that for all u, v ∈ B(X),
there exists a word w of length N with uwv ∈ B(X). We say that X has the
almost specification property [8] if there exists a nonnegative integer N such
that for all u, v ∈ B(X), there exists a word w of length less than or equal to
N with uwv ∈ B(X).

We call N in Definition 2.2 the gap. It is obvious that the specification
property implies the almost specification property and the almost specification
property implies the irreducibility.

Definition 2.3. Let X be an irreducible subshift. A word u is synchronizing
for X if vuw ∈ B(X) whenever vu and uw are in B(X). A subshift X is called
a synchronized system if it has a synchronizing word.

In the topological dynamics, the topological entropy is an important notion.
The number |Bn(X)| of n-words appearing in a subshift X gives us a way to
define the entropy of X which is equal to the topological entropy of (X,σ).

Definition 2.4. Let X be a subshift. The entropy of X is defined by

h(X) = lim
n→∞

1

n
log |Bn(X)|.

Here and throughout log is the logarithm to the base e. Let C(X,R) be
the set of all real-valued continuous functions on X. For f ∈ C(X,R), the
following is a generalized notion of the topological entropy.
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Definition 2.5. Let X be a subshift and let f ∈ C(X,R). The topological
pressure of f is defined by

P (f) = lim
n→∞

1

n
log

 ∑
w∈Bn(X)

exp

(
sup
x∈[w]

Snf(x)

),
where Snf(x) =

∑n−1
i=0 f

(
σi(x)

)
.

Since [w] is a compact subset of X for w ∈ B(X), we can use maximum
instead of supremum in Definition 2.5. The limit exists, since we have the
subadditivity that for m,n ∈ N∑

w∈Bm+n(X)

exp

(
sup
x∈[w]

Sm+nf(x)

)

≤

 ∑
w∈Bm(X)

exp

(
sup
x∈[w]

Smf(x)

) ∑
w∈Bn(X)

exp

(
sup
x∈[w]

Snf(x)

) .

In fact

P (f) = lim
n→∞

1

n
log

 ∑
w∈Bn(X)

exp

(
sup
x∈[w]

Snf(x)

)
= inf

n∈N

1

n
log

 ∑
w∈Bn(X)

exp

(
sup
x∈[w]

Snf(x)

).
If f = 0, then the topological pressure of f is exactly same as the entropy of X.
The topological pressure of f and the measure-theoretic entropies of invariant
measures on (X,σ) have a relation called the variational principle [12]: If f is
a real-valued continuous function on X, then

P (f) = sup

{
hµ(σ) +

∫
fdµ

∣∣∣∣µ ∈ Mσ(X)

}
,

where hµ(σ) is the measure-theoretic entropy of (X,σ, µ) and Mσ(X) is the set
of σ-invariant Borel probability measures on X. Because measures on X which
attain the supremum are special, we give these measures a name.

Definition 2.6. Let X be a subshift and let f ∈ C(X,R). A measure
µ ∈ Mσ(X) is called an equilibrium state for f if P (f) = hµ(σ) +

∫
fdµ.

In particular, if f = 0, then we call µ a measure of maximal entropy.

3. A relation between Gibbs measures and the balanced property

Throughout the set of all Borel probability measures on a subshift X is
denoted by M(X) and the set of all real-valued continuous functions on a
subshift X is denoted by C(X,R). If w ∈ B(X), then we let xw denote an
arbitrary point in [w].
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Definition 3.1. A measure µ ∈ M(X) is called a Gibbs measure for f ∈
C(X,R) if there exist c ≥ 1 and P ∈ R such that for each n ∈ N, w ∈ Bn(X),
and x ∈ [w]

(1) c−1 ≤ µ ([w]) exp (nP )

expSnf(x)
≤ c.

Remark 3.2. If µ satisfies (1) for f ∈ C(X,R), then P must be equal to the
topological pressure P (f) of f . If µ is an invariant Gibbs measure for f , then
µ is an equilibrium state for f , i.e., P (f) = hµ(σ) +

∫
fdµ [6].

Definition 3.3. A function f ∈ C(X,R) is called a Bowen function if there
exists M ≥ 0 such that, for every n ∈ N, we have

|Snf(x)− Snf(y)| ≤ M

whenever x, y ∈ X and x0x1 · · ·xn−1 = y0y1 · · · yn−1. We call the set of all
Bowen functions the Bowen class denoted by Bow(X).

If µ is a Gibbs measure for f ∈ C(X,R), then f must be a Bowen function.
The following are extension of notions in [1].

Definition 3.4. LetX be a subshift and let f ∈ C(X,R). ThenX is boundedly
supermultiplicative with respect to f (BSM(f) for short) if there exists c ≥ 1
such that for each n,m ∈ N

c−1 ≤

(∑
u∈Bm(X) expSmf(xu)

)(∑
v∈Bn(X) expSnf(xv)

)
∑

w∈Bm+n(X) expSm+nf(xw)
≤ c

for each choice of xu ∈ [u], xv ∈ [v], and xw ∈ [w].

Definition 3.5. Let X be a subshift and let f ∈ C(X,R). We say that X is
right balanced with respect to f if there exists c ≥ 1 such that for each m,n ∈ N
and u ∈ Bm(X)

c−1 ≤
∑

v∈Fn(u)
expSm+nf(xuv)

expSmf(xu)
∑

w∈Bn(X) expSnf(xw)
≤ c

for each choice of xu ∈ [u], xuv ∈ [uv], and xw ∈ [w]. We say that X is left
balanced with respect to f if there exists c ≥ 1 such that for each m,n ∈ N and
u ∈ Bm(X)

c−1 ≤
∑

v∈Pn(u)
expSm+nf(xvu)

expSmf(xu)
∑

w∈Bn(X) expSnf(xw)
≤ c

for each choice of xu ∈ [u], xvu ∈ [vu], and xw ∈ [w]. We say that X is balanced
with respect to f if it is left and right balanced with respect to f . We say that
X is one-sided balanced with respect to f if it is left or right balanced with
respect to f .
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We note that if f = 0, then the right balanced with respect to f is same as
the balanced property defined in [1].

We construct a concrete example of X and f , where X is BSM(f).

Example 3.6. Let X = {0, 1}Z be the full 2-shift. Define a continuous real-
valued function f by

f(x) =

{
0 if xi = 0 for all i ≥ 0,
1
2j otherwise,

where j is the minimum of {i |xi = 1, i ≥ 0}. If x[0,n) = y[0,n), then we have∣∣f(σi(x)
)
−f
(
σi(y)

)∣∣ ≤ 1

2n−i

for i = 0, . . . , n− 1. For each u ∈ B(X), take x̃u ∈ [u]. Then we have

∣∣S|u|f(x̃u)− S|u|f(xu)
∣∣ ≤ |u|−1∑

i=0

1

2|u|−i
≤ 1.

It follows that(∑
u∈Bm(X) expSmf(xu)

)(∑
v∈Bn(X) expSnf(xv)

)
∑

w∈Bm+n(X) expSm+nf(xw)

≤ exp(3)

(∑
u∈Bm(X) expSmf(x̃u)

)(∑
v∈Bn(X) expSnf(x̃v)

)
∑

w∈Bm+n(X) expSm+nf(x̃w)

= exp (3)

(∑
u∈Bm(X) expSmf(x̃u)

)(∑
v∈Bn(X) expSnf(x̃v)

)
∑

p∈Bm(X)

∑
q∈Bn(X) expSm+nf(x̃pq)

≤ exp(5)

(∑
u∈Bm(X) expSmf(x̃u)

)(∑
v∈Bn(X) expSnf(x̃v)

)
∑

p∈Bm(X)

∑
q∈Bn(X) exp[Smf(x̃p) + Snf(x̃q)]

= exp(5).

The second inequality follows from

Sm+nf (x̃pq) = Smf (x̃pq) + Snf (σm(x̃pq)) ≥ Smf (x̃p) + Snf (x̃q)− 2.

From similar calculations, we obtain

exp(−5) ≤

(∑
u∈Bm(X) expSmf(xu)

)(∑
v∈Bn(X) expSnf(xv)

)
∑

w∈Bm+n(X) expSm+nf(xw)
.

Therefore X is BSM(f).

We note that the full A-shift is BSM(f) for any f ∈Bow(X).
It is not hard to see that the one-sided balanced property with respect to

f implies that f is a Bowen function as follows. Suppose that a subshift X is
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right balanced with respect to f ∈ C(X,R) and u ∈ B(X). Let x and y be
points in [u]. For each w ∈ B(X), take a point x̂w ∈ [w]. Since X is right
balanced with respect to f , there exists c ≥ 1 such that for each n ∈ N

c−1 ≤
∑

v∈Fn(u)
expSm+nf(x̂uv)

expSmf(x)
∑

w∈Bn(X) expSnf(x̂w)
≤ c

and

c−1 ≤
∑

v∈Fn(u)
expSm+nf(x̂uv)

expSmf(y)
∑

w∈Bn(X) expSnf(x̂w)
≤ c,

where m is the length of u. It follows that

c−2 ≤ expSmf(x)

expSmf(y)
≤ c2

or equivalently,

|Smf(x)− Smf(y)| ≤ 2 log c.

That is, f is a Bowen function. For the case where X is left balanced with
respect to f , we get the same result by similar calculations.

We also note that if f is in Bow(X), then there exists c such that for each
m,n ∈ N and u ∈ Bm(X)∑

v∈Fn(u)
expSm+nf(xuv)

expSmf(xu)
∑

w∈Bn(X) expSnf(xw)
≤ c

and ∑
v∈Pn(u)

expSm+nf(xvu)

expSmf(xu)
∑

w∈Bn(X) expSnf(xw)
≤ c

for each choice of xu ∈ [u], xuv ∈ [uv], xvu ∈ [vu], and xw ∈ [w] (see the proof
of Proposition 3.9).

Theorem 3.7. Let X be a subshift and let f ∈ C (X,R). The right balanced
property with respect to f and the left balanced property with respect to f are
not equivalent.

Proof. Let Y = {a, b}Z and let S = {s | s = 2n for n ∈ N}. Then define a
sequence {as}s∈S by as = log2 s and C = {1wbs−as | w ∈ Bas(Y ) for s ∈ S}.
LetX be the closure of the collection of all bi-infinite concatenations of elements
in C and let Z be the closure of the collection of all bi-infinite concatenations
of elements in {10s | s ∈ S}. Then X and Z are subshifts and X contains Y
because {as}s∈S is unbounded. It is well known that the entropy of Z is equal

to log λ, where λ is a unique positive solution of
∑

s∈S x−(s+1) = 1 [9]. Since
Z is BSM(0) [7], there exists d > 0 such that

λn ≤ |Bn (Z)| ≤ dλn
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for n ∈ N [1]. Define a block map Φ from B1(X) to {0, 1} by

Φ(w) =

{
1 if w = 1,

0 if w ̸= 1,

and a block map Ψ from B(X) to B (Z) by

Ψ(w1w2 · · ·wn) = Φ(w1)Φ(w2) · · ·Φ(wn).

For each s ∈ S,
∣∣Ψ−1(10s1)

∣∣ = |Bas
(Y )| = 2as . Since {as}s∈S is unbounded,

we obtain
∣∣Ψ−1(10n)

∣∣ = |Bn(Y )| = 2n for n ∈ N. For n ∈ N, an element of

Ψ−1 (0n1) is a suffix of length n+1 of u1, where u ∈ C. Since {s−as}s∈S is an
unbounded increasing sequence, u[as+2,s+1] is a suffix of v[as′+2,s′+1] whenever
u, v ∈ C, |u| = s + 1, |v| = s′ + 1, s, s′ ∈ S, and s ≤ s′. Hence we have∣∣Ψ−1(0n1)

∣∣ ≤ 2nα, where α = sups∈S
as

s . Since 1 is a synchronizing word for
X, we have∣∣Φ−1 (0n10s110s21 · · · 10sk10m)

∣∣ = ∣∣Φ−1 (0n1)
∣∣( k∏

i=1

∣∣Φ−1 (10si1)
∣∣) ∣∣Φ−1 (10m)

∣∣
≤ 2m2(n+s1+···+sk)α

≤ 2m2lα,

where l is the length of 0n10s110s21 · · · 10sk .
Let Bn(Z, k)={w=w1 · · ·wn ∈ Bn (Z) |wk=1 and wi ̸=1 for i > k}. Then,

for n ∈ N

|Bn(X)| ≤
n∑

k=0

(
|Bn(Z, k)|2n−k2kα

)
≤

n∑
k=0

dλk2n−k2kα

=

n∑
k=0

d2k
log λ
log 2 2n−k2kα

= d2n
n∑

k=0

2(
log λ
log 2 +α−1)k

≤ d2n
∞∑
k=0

2(
log λ
log 2 +α−1)k.

Since
∑

s∈S

(√
2
)−(s+1)

< 1 and α = 1
2 , we have λ <

√
2 and log λ

log 2 +α− 1 < 0.

It follows that there exists d′ ≥ 1 such that, for n ∈ N, |Bn(X)| ≤ d′2n. Since
{as}s∈S is unbounded, we have Bn(Y ) ⊂ Fn(u) for any u ∈ B(X) and n ∈ N.
Therefore we obtain

|Fn(u)|
|Bn(X)|

≥ |Bn(Y )|
d′2n

=
1

d′



THE EXISTENCE OF INVARIANT GIBBS MEASURES 1095

i.e., X is right balanced with respect to f = 0.
Suppose thatX is left balanced with respect to f = 0. There exists 0 < c ≤ 1

such that, for u ∈ B(X) and n ∈ N, the number |Pn(u)| of words v of length
n followed by u is greater than or equal to c |Bn(X)|. The set Bn(X) of all
words of length n in X is disjoint union

⋃n
k=0 Bn(X, k), where Bn(X, k) is the

set of all elements of Bn(X) such that the k-th coordinate is 1 and the j-th
coordinate is not 1 for all j > k. Since 1 is synchronizing, we have

|Bn(X, k)| = |Pk−1(1)| |Fn−k(1)|

≥ 1

d′
|Pk−1(1)| |Bn−k(X)| (by the right balanced property of X)

≥ c

d′
|Bk−1(X)| |Bn−k(X)| (by the left balanced property of X)

≥ c

d′
2n−1 (since X contains Y and h(Y ) = log 2).

Let c′ = c
2d′ . Then

|Bn(X)| =
n∑

k=0

|Bn(X, k)| ≥
n∑

k=0

c′2n = c′(n+ 1)2n.

This is a contradiction because |Bn(X)| ≤ d′2n for n ∈ N. Therefore X is not
left balanced with respect to f = 0. □

There exists a nonzero function f such that the right balanced property and
the left balanced property are not equivalent.

Example 3.8. Let X and Y be the subshifts in the above proof. Define a
real-valued continuous function f on X by

f(x) =
∑

i∈N∪{0}

δi(x),

where δi(x) =

{
0 if xi = 1,
1
2i otherwise.

For u ∈ B(X), let m = |u|. We have

∣∣f(σi(x)
)
−f
(
σi(y)

)∣∣ ≤ 1

2m−1−i

whenever x, y ∈ [u] and i = 0, 1, . . . ,m− 1. Thus |Smf(x)− Smf(y)| ≤ 2, that
is, f is in Bow(X). It follows that for any n ∈ N, we have∑

v∈Fn(u)
expSm+nf(xuv)

expSmf(xu)
∑

v∈Bn(X) expSnf(xv)
≥ exp(−2)

∑
v∈Fn(u)

expSnf(σ
mxuv)∑

v∈Bn(X) expSnf(xv)
.

Since {as}s∈S is unbounded, Fn(u) contains Bn(Y ). Thus we get

exp(−2)
∑

v∈Fn(u)
expSnf(σ

mxuv)∑
v∈Bn(X) expSnf(xv)

≥
exp(−2)

∑
v∈Bn(Y ) expSnf(σ

mxuv)∑
v∈Bn(X) expSnf(xv)

.
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If v ∈ Bn(X) \ Bn(Y ) and w ∈ Bn(Y ), then the following holds:

sup {expSnf(x) |x ∈ [v]} ≤ sup {expSnf(x) |x ∈ [w]}

because there exists y ∈ Y ⊂ X such that y0y1 · · · yn−1 = w. Since X is right
balanced with respect to f = 0, h(X) = log 2, and |Bn (Y )| = 2n for all n ∈ N,
there exists d ≥ 1 such that |Bn(X)| ≤ d |Bn(Y )| for all n ∈ N [1]. Hence

exp(−2)

∑
v∈Bn(Y ) expSnf(σ

mxuv)∑
v∈Bn(X) expSnf(xv)

= exp(−2)

∑
v∈Bn(Y ) expSnf(σ

mxuv)∑
v∈Bn(Y ) expSnf(xv) +

∑
v∈Bn(X)\Bn(Y ) expSnf(xv)

≥ exp(−2)

∑
v∈Bn(Y )(sup {expSnf(x) |x ∈ [v]} exp(−2))

d
∑

v∈Bn(Y ) sup {expSnf(x) |x ∈ [v]}

=
exp(−4)

d
.

Since f is in Bow(X), we already know that there exists c such that∑
v∈Fn(u)

expSm+nf(xuv)

expSmf(xu)
∑

v∈Bn(X) expSnf(xv)
≤ c.

Therefore X is right balanced with respect to f .
Now, we show that X is not left balanced with respect to f . Let n be a

positive integer and let u = b1+2n1. Then every (2n+1 − 2n − 1)-predecessor

of u is of the form vb2
n+1−2n−1−(n+1), where v ∈ Bn+1(Y ). Since |Bn+1(Y )| =

2n+1, the number of (2n+1 − 2n − 1)-predecessors of u is equal to 2n+1. Let
i = 2n+1 − 2n − 1. For each o ∈ B(X), take a point x̂o ∈ [o] such that
S|o|f(x̂o) = supx∈[o] S|o|f(x). Then we have∑

v∈Pi(u)
expS|u|+if(x̂vu)

expS|u|f(x̂u)
∑

w∈Bi(X) expSif(x̂w)

≤
exp(2)

∑
v∈Bn+1(Y ) expSif(x̂vbi−(n+1)u)∑
w∈Bi(Y ) expSif(x̂w)

≤
exp(2)

∑
v∈Bn+1(Y ) expSif(x̂vbi−(n+1))∑
w∈Bi(Y ) expSif(x̂w)

.

For w ∈ Bi(Y ), there exists x ∈ Y ⊂ X such that x0x1 · · ·xi−1 = w, so
Sif(x̂w) = 2i. It follows that

exp(2)

∑
v∈Bn+1(Y ) expSif(x̂vbi−(n+1))∑

w∈Bi(Y ) expSif(x̂w)
= exp(2)

|Bn+1(Y )| exp(2i)
|Bi(Y )| exp(2i)

=
exp(2)

2i−(n+1)
.
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As n goes to ∞, exp(2)

22n+1−2n−1−(n+1)
converges to 0. Therefore X is not left

balanced with respect to f .

However if a subshift X has the almost specification property, then the
left balanced property with respect to f and the right balanced property with
respect to f are equivalent. Moreover, if a subshift X is almost specified, then
it is balanced with respect to every function f ∈ Bow(X).

Proposition 3.9. Let X be an almost specified subshift and let f ∈ C(X,R).
Then the following are equivalent:

1) X has the balanced property with respect to f .
2) X has the one-sided balanced with respect to f .
3) f is a Bowen function.

Proof. We already know that 1) implies 2) and 2) implies 3).
Now, let’s show that 3) implies 1). Suppose that f is a Bowen function

on X. Thus there exists M such that for u ∈ B(X), exp(Snf(y) − M) ≤
expSnf(x) ≤ exp(Snf(y) + M) whenever x, y ∈ [u] and n = |u|. Since X is
almost specified, there exists N such that whenever u, v ∈ B(X), there exists
w such that |w| ≤ N and uwv ∈ B(X). Let m,n ∈ N and let u ∈ Bm(X). For
each v ∈ Fn(u), (xu)[0,m) = (xuv)[0,m) = u and (xv)[0,n) = σm(xuv)[0,n) = v.
Hence we obtain

expSmf(xu)
∑

w∈Bn(X)

expSnf(xw)

≥ expSmf(xu)
∑

v∈Fn(u)

exp (Snf(xv)−M)

≥
∑

v∈Fn(u)

exp (Sm+nf(xuv)− 3M).

It follows that ∑
v∈Fn(u)

expSm+nf(xuv)

expSmf(xu)
∑

w∈Bn(X) expSnf(xw)
≤ exp (3M).

Since X is almost specified, for each w ∈ B(X) there exists k ≤ N such that
F|ω|+k(u) contains a word which ends with w. It follows that

expSmf(xu)
∑

w∈Bn(X)

expSnf(xw)

≤
N∑

k=0

exp (k∥f∥∞)
∑

v∈Fn+k(u)

exp (Sm+n+kf (xuv) + 2M)

 ,
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where ∥f∥∞ = supx∈X f(x). If v ∈ Fn(u), then the number of words in Fn+k(u)
which start with v is at most |Bk(X)|. Thus we have

N∑
k=0

exp(k∥f∥∞)
∑

v∈Fn+k(u)

exp (Sm+n+kf(xuv) + 2M)


≤

N∑
k=0

exp(k∥f∥∞)|Bk(X)|
∑

v∈Fn(u)

exp(Sm+nf(xuv) + 3M + k∥f∥∞)


=

(
N∑

k=0

exp(2k∥f∥∞ + 3M)|Bk(X)|

) ∑
v∈Fn(u)

expSm+nf(xuv).

Consequently, we get(
N∑

k=0

[|Bk (X)| exp (2k ∥f∥∞ + 3M)]

)−1

≤
∑

v∈Fn(u)
expSm+nf(xuv)

expSmf(xu)
∑

w∈Bn(X) expSnf(xw)
.

Therefore X is right balanced with respect to f . Similarly, X is left balanced
with respect to f . □

Example 3.10. Let X = {0, 1}Z. Then it is balanced with respect to f defined
in Example 3.6 because X is almost specified and f is a Bowen function.

Define g on X by

g(x) =

{
0 if xi = 0 for all i ≥ 0,
1

j+1 otherwise,

where j = min {i |xi = 1, i ≥ 0}. For each k ∈ N, choose x(k) ∈ X such that
x(k)i = 0 for i < k and x(k)i = 1 for i ≥ k. Let y be the point in X such that

yi = 0 for all i ∈ Z. Then x(k), y ∈
[
0k
]
and |Skg(x(k))−Skg(y)| =

∑k−1
l=0

1
l+2 .

Since
∑∞

l=0
1

l+2 diverges to ∞, given g is not a Bowen function on X. By
Proposition 3.9, X is not one-sided balanced with respect to g. That is, it is
neither left nor right balanced with respect to g.

It is known that a subshift X has a Gibbs measure for f = 0 ∈ C(X,R) if
and only if it has the right balanced property with respect to f = 0 (Theorem
3.14 in [1]). However, we can not guarantee that the constructed Gibbs measure
in the proof of the theorem is invariant (Theorem 3.7 and Theorem 3.14). So
we investigate a necessary and sufficient condition for the existence of invariant
Gibbs measures. To obtain a necessary and sufficient condition for the existence
of invariant Gibbs measures, we need the following lemmas. The lemmas are
extension of results in [1].
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Lemma 3.11. Let X be a subshift and f ∈ C(X,R). Then X is BSM(f) if
and only if there exist c ≥ 1 and P ∈ R such that for each n ∈ N

c−1 ≤ expnP∑
u∈Bn(X) expSnf(xu)

≤ c

for each choice of xu ∈ [u].

If such P exists, then P must be equal to the topological pressure P (f) of
f .

Proof. First we show if part. Observe that

c−2 ≤ exp (m+ n)P(∑
u∈Bm(X) expSmf(xu)

)(∑
v∈Bn(X) expSnf(xv)

) ≤ c2.

Since c−1 exp (m+ n)P ≤
∑

w∈Bm+n(X) expSm+nf(xw) ≤ c exp (m+ n)P , we
get

c−2 ≤
c
∑

w∈Bm+n(X) expSm+nf(xw)(∑
u∈Bm(X) expSmf(xu)

)(∑
v∈Bn(X) expSnf(xv)

)
and

c−1
∑

w∈Bm+n(X) expSm+nf(xw)(∑
u∈Bm(X) expSmf(xu)

)(∑
v∈Bn(X) expSnf(xv)

) ≤ c2.

Then we have

c−3 ≤
∑

w∈Bm+n(X) expSm+nf(xw)(∑
u∈Bm(X) expSmf(xu)

)(∑
v∈Bn(X) expSnf(xv)

) ≤ c3.

Therefore X is BSM(f).
Let m and n be two positive integers. Then take x̂u ∈ [u] for each u ∈ B(X).

Then there exists d ≥ 1 such that

(2) d−1 ≤

(∑
u∈Bn(X) expSnf(xu)

)(∑
v∈Bm(X) expSmf(x̂v)

)
∑

w∈Bm+n(X) expSm+nf(x̂w)
≤ d

and

(3) d−1 ≤

(∑
u∈Bn(X) expSnf(yu)

)(∑
v∈Bm(X) expSmf(x̂v)

)
∑

w∈Bm+n(X) expSm+nf(x̂w)
≤ d.

By (2) and (3), we have

(4) d−2 ≤
∑

u∈Bn(X) expSnf(xu)∑
u∈Bn(X) expSnf(yu)

≤ d2.
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Let pn =
∑

u∈Bn(X) exp
(
supx∈[u] Snf(xu)

)
for each n ∈ N and let P be the

topological pressure of f . Since pm+n ≤ pmpn for m,n ∈ N, P is equal to
infn∈N

1
n log pn. By (4)

P ≤ 1

n
log pn ≤ 1

n
log

d2
∑

u∈Bn(X)

expSnf(xu)

.

It follows that

expnP ≤ d2
∑

u∈Bn(X)

expSnf(xu).

To obtain a lower bound of expnP∑
u∈Bn(X) expSnf(xu)

, consider p′n = d−1pn. Since

X is BSM(f), we have p′m+n ≥ p′mp′n. Thus

P = lim
n→∞

1

n
log p′n = sup

n∈N

1

n
log p′n.

It follows that

1

n
log

d−1
∑

u∈Bn(X)

expSnf(xu)

 ≤ 1

n
log p′n ≤ P.

Therefore we obtain

d−1
∑

u∈Bn(X)

expSnf(xu) ≤ expnP .

□

Lemma 3.12. Let X be a subshift and f ∈ C(X,R). If µ is a Gibbs measure
for f , then X is BSM(f).

Proof. Since µ is a Gibbs measure for f , there exists c ≥ 1 such that whenever
n ∈ N and u ∈ Bn(X), we have

c−1 ≤ µ ([u]) expnP

expSnf(xu)
≤ c.

It is equivalent to

c−1 expSnf(xu) ≤ µ ([u]) expnP ≤ c expSnf(xu).

By summing over all u ∈ Bn(X), we obtain

c−1
∑

u∈Bn(X)

expSnf(xu) ≤ expnP ≤ c
∑

u∈Bn(X)

expSnf(xu).

By Lemma 3.11, X is BSM(f). □

Lemma 3.13. Let X be a subshift and f ∈ C(X,R). If X is one-sided balanced
with respect to f , then X is BSM(f).
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Proof. Suppose X is right balanced with respect to f . Then there exists c > 0
such that for each m,n ∈ N and u ∈ Bm(X)

c−1 ≤
∑

v∈Fn(u)
expSm+nf(xuv)

expSmf(xu)
∑

w∈Bn(X) expSnf(xw)
≤ c

for each choice of xu ∈ [u], xuv ∈ [uv], and xw ∈ [w]. Hence we have

c−1
∑

u∈Bm(X)

expSmf(xu)
∑

v∈Bn(X)

expSnf(xv)


≤

∑
u∈Bm(X)

 ∑
v∈Fn(u)

expSm+nf(xuv)


≤ c

∑
u∈Bm(X)

expSmf(xu)
∑

v∈Bn(X)

expSnf(xv)

.
It follows that

c−1 ≤

(∑
u∈Bm(X) expSmf(xu)

)(∑
v∈Bn(X) expSnf(xv)

)
∑

u∈Bm(X)

[∑
v∈Fn(u)

expSm+nf(xuv)
] ≤ c.

Since every word w ∈ Bm+n(X) has a unique decomposition uv such that
w = uv, u ∈ Bm(X), and v ∈ Bn(X), we have

∑
u∈Bm(X)

 ∑
v∈Fn(u)

expSm+nf(xuv)

 =
∑

w∈Bm+n(X)

expSm+nf(xw).

Hence we get

c−1 ≤

(∑
u∈Bm(X) expSmf(xu)

)(∑
v∈Bn(X) expSnf(xv)

)
∑

w∈Bm+n(X) expSm+nf(xw)
≤ c.

For the case where X is left balanced with respect to f , we obtain the same
result by similar calculations. □

Theorem 3.14. A subshift X has an invariant Gibbs measure µ for f ∈
C(X,R) if and only if it is balanced with respect to f .

Proof. First we show the only if part. Let c be the constant in Definition 3.1
and let u be an m-word of X. Then, for n ∈ N

c−1 expSmf(xu)

expmP
≤ µ ([u]) =

∑
v∈Fn(u)

µ ([uv]) ≤
c
∑

v∈Fn(u)
expSm+nf(xuv)

exp (m+ n)P
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and

c−1
∑

v∈Fn(u)
expSm+nf(xuv)

exp (m+ n)P
≤

∑
v∈Fn(u)

µ ([uv]) = µ ([u]) ≤ c expSmf(xu)

expmP
.

It follows from the fact that the exponential function is positive that

c−2 ≤
∑

v∈Fn(u)
expSm+nf(xuv)

expSmf(xu) expnP

and ∑
v∈Fn(u)

expSm+nf(xuv)

expSmf(xu) expnP
≤ c2.

By Lemma 3.11, and Lemma 3.12, there exists d ≥ 1 such that

c−2 ≤
∑

v∈Fn(u)
expSm+nf(xuv)

expSmf(xu) expnP
≤

∑
v∈Fn(u)

expSm+nf(xuv)

d−1 expSmf(xu)
∑

w∈Bn(X) expSnf(xw)

and ∑
v∈Fn(u)

expSm+nf(xuv)

d expSmf(xu)
∑

w∈Bn(X) expSnf(xw)
≤
∑

v∈Fn(u)
expSm+nf(xuv)

expSmf(xu) expnP
≤ c2.

Thus X is right balanced with respect to f . Since µ is invariant, we have∑
v∈Pn(u)

µ([vu]) = µ([u])

for m,n ∈ N and u ∈ Bm(X). By similar calculations, we can show that X is
left balanced with respect to f . Therefore X is balanced with respect to f .

Conversely, suppose thatX is balanced with respect to f . Then it is BSM(f)
by Lemma 3.13. Let c be a constant satisfying Definition 3.4, Definition 3.5,
and Lemma 3.11. For each n ∈ N and u ∈ Bn(X), fix a point x̂u ∈ [u] and
define a measure

νn =
1∑

u∈Bn(X) expSnf(x̂u)

∑
u∈Bn(X)

expSnf(x̂u)δx̂u
,

where δx̂u
is the point measure concentrated at the point x̂u.

Let m ∈ N and let u ∈ Bm(X). If n ≥ m, 0 ≤ k ≤ n−m, and l = n−m−k,
then we note that

νn
(
σ−k([u])

)
=

∑
vuw∈Bn(X)

|v|=k

νn(x̂vuw)

=

∑
v∈Pk(u)

∑
w∈Fl(vu)

expSnf(x̂vuw)∑
t∈Bn(X) expSnf(x̂t)

.

We claim that

(5) c−5 expSmf(xu)

expmP
≤ νn

(
σ−k([u])

)
≤ c5

expSmf(xu)

expmP
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for each choice of xu ∈ [u]. Since X is right balanced with respect to f , we
have ∑

v∈Pk(u)

∑
w∈Fl(vu)

expSnf(x̂vuw)(6)

≤
∑

v∈Pk(u)

c expSm+kf(xvu)
∑

s∈Bl(X)

expSlf(x̂s)

.

Since X is left balanced with respect to f , we have

∑
v∈Pk(u)

c expSm+kf(xvu)
∑

s∈Bl(X)

expSlf(x̂s)

(7)

≤ c2

expSmf(xu)
∑

p∈Bk(X)

expSkf(x̂p)

 ∑
s∈Bl(X)

expSlf(x̂s)

 .

By Lemma 3.11 and Lemma 3.13, we have∑
t∈Bn(X)

expSnf(xt)(8)

≥ c−1

 ∑
o∈Bm(X)

expSmf(xo)

 ∑
p∈Bn−m(X)

expSn−mf(x̂p)


≥ c−2

 ∑
o∈Bm(X)

expSmf(xo)

 ∑
p∈Bk(X)

expSkf(x̂p)

 ∑
s∈Bl(X)

expSlf(x̂s)


≥ c−3 expmP

 ∑
p∈Bk(X)

expSkf(x̂p)

 ∑
s∈Bl(X)

expSlf(x̂s)

.

By (6), (7), and (8), we have

νn
(
σ−k([u])

)
≤

c2
(
expSmf(xu)

∑
p∈Bk(X) expSkf(x̂p)

)(∑
s∈Bl(X) expSlf(x̂s)

)
c−3 expmP

(∑
p∈Bk(X) expSkf(x̂p)

)(∑
s∈Bl(X) expSlf(x̂s)

)
= c5

expSmf(xu)

expmP
.

By similar calculations, we have

c−5 expSmf(xu)

expmP
≤ νn

(
σ−k([u])

)
.

Thus the claim holds.
Now define new measures µn = 1

n

∑n−1
i=0 νn ◦ σ−i for n ∈ N. Then there

exists a subsequence {µnj
} of the sequence {µn} which converges to an invariant
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measure. Let µ be the limit of {µnj
}. By (5), for each u ∈ Bm(X) and n ≥ m,

1

n

n−m∑
i=0

c−5 expSmf(xu)

expmP
≤ µn([u]) =

1

n

n−1∑
i=0

νn
(
σ−i([u])

)
≤ 1

n

n−m∑
i=0

c5
expSmf(xu)

expmP
+

1

n

n−1∑
i=n−m+1

1.

Since limj→∞ µnj
([u]) = µ ([u]), we obtain

c−5 expSmf(xu)

expmP
= lim

j→∞

(
(nj −m+ 1)c−5

nj

expSmf(xu)

expmP

)
≤ lim

j→∞
µnj

([u]) = µ ([u])

≤ lim
j→∞

(
(nj −m+ 1)c5

nj

expSmf(xu)

expmP
+

m− 1

nj

)
= c5

expSmf(xu)

expmP
.

□

If f = 0, then we have the following.

Corollary 3.15. A subshift X is balanced with respect to f = 0 if and only if
it has a measure of maximal entropy with the Gibbs property.

By Theorem 3.7 and Theorem 3.14 together with the existence of a Gibbs
measure (Theorem 3.14 in [1]), the following holds.

Corollary 3.16. There exist a subshift X and f ∈ C(X,R) such that none of
the Gibbs measures for f is invariant.
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