DOI QR코드

DOI QR Code

PARAMETRIC EULER SUMS OF HARMONIC NUMBERS

  • Junjie Quan (School of Information Science and Technology Xiamen University Tan Kah Kee College) ;
  • Xiyu Wang (School of Mathematics and Statistics Northeast Normal University) ;
  • Xiaoxue Wei (School of Economics and Management Anhui Normal University) ;
  • Ce Xu (School of Mathematics and Statistics Anhui Normal University)
  • 투고 : 2023.10.08
  • 심사 : 2024.02.29
  • 발행 : 2024.07.31

초록

In this paper, we define a parametric variant of generalized Euler sums and construct contour integration to give some explicit evaluations of these parametric Euler sums. In particular, we establish several explicit formulas of (Hurwitz) zeta functions, linear and quadratic parametric Euler sums. Furthermore, we also give an explicit evaluation of alternating double zeta values ${\zeta}({\bar{2j}};\,2m+1)$ in terms of a combination of alternating Riemann zeta values by using the parametric Euler sums.

키워드

과제정보

Xiaoxue Wei is supported by the Natural Science Foundation (Grant No. Anhui Province 2108085QG304). Ce Xu is supported by the National Natural Science Foundation of China (Grant No. 12101008), the Natural Science Foundation of Anhui Province (Grant No. 2108085QA01) and the University Natural Science Research Project of Anhui Province (Grant No. KJ2020A0057).

참고문헌

  1. H. Alzer and J. Choi, Four parametric linear Euler sums, J. Math. Anal. Appl. 484 (2020), no. 1, 123661, 22 pp. https://doi.org/10.1016/j.jmaa.2019.123661 
  2. D. H. Bailey, J. M. Borwein, and R. Girgensohn, Experimental evaluation of Euler sums, Experiment. Math. 3 (1994), no. 1, 17-30. http://projecteuclid.org/euclid.em/1062621000  1062621000
  3. D. Borwein, J. M. Borwein, and D. M. Bradley, Parametric Euler sum identities, J. Math. Anal. Appl. 316 (2006), no. 1, 328-338. https://doi.org/10.1016/j.jmaa.2005.04.040 
  4. J. Choi, Certain summation formulas involving harmonic numbers and generalized harmonic numbers, Appl. Math. Comput. 218 (2011), no. 3, 734-740. https://doi.org/10.1016/j.amc.2011.01.062 
  5. J. Choi, Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers, J. Inequal. Appl. 2013, 2013:49, 11 pp. https://doi.org/10.1186/1029-242X-2013-49 
  6. J. Choi and H. M. Srivastava, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Comput. Modelling 54 (2011), no. 9-10, 2220-2234. https://doi.org/10.1016/j.mcm.2011.05.032 
  7. L. Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol. 20 (1776), 140-186; reprinted in Opera Omnia, Ser. Ib 15(1927), 217-267, B. Teubner (ed.), Berlin. 
  8. P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experiment. Math. 7 (1998), no. 1, 15-35. http://projecteuclid.org/euclid.em/1047674270  1047674270
  9. M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), no. 2, 275-290. http://projecteuclid.org/euclid.pjm/1102636166  102636166
  10. M. E. Hoffman, An odd variant of multiple zeta values, Commun. Number Theory Phys. 13 (2019), no. 3, 529-567. 
  11. M. Kaneko and H. Tsumura, On multiple zeta values of level two, Tsukuba J. Math. 44 (2020), no. 2, 213-234. https://doi.org/10.21099/tkbjm/20204402213 
  12. F. Luo and X. Si, A note on Arakawa-Kaneko zeta values and Kaneko-Tsumura 𝜂-values, Bull. Malays. Math. Sci. Soc. 46 (2023), no. 1, Paper No. 21, 9 pp. https://doi.org/10.1007/s40840-022-01420-y 
  13. I. Mezo, Nonlinear Euler sums, Pacific J. Math. 272 (2014), no. 1, 201-226. https://doi.org/10.2140/pjm.2014.272.201 
  14. X. Si, Euler-type sums involving multiple harmonic sums and binomial coefficients, Open Math. 19 (2021), no. 1, 1612-1619. https://doi.org/10.1515/math-2021-0124 
  15. A. Sofo, Quadratic alternating harmonic number sums, J. Number Theory 154 (2015), 144-159. https://doi.org/10.1016/j.jnt.2015.02.013 
  16. A. Sofo and J. Choi, Extension of the four Euler sums being linear with parameters and series involving the zeta functions, J. Math. Anal. Appl. 515 (2022), no. 1, Paper No. 126370, 23 pp. https://doi.org/10.1016/j.jmaa.2022.126370 
  17. A. Sofo and H. M. Srivastava, Identities for the harmonic numbers and binomial coefficients, Ramanujan J. 25 (2011), no. 1, 93-113. https://doi.org/10.1007/s11139-010-9228-3 
  18. W. Wang and Y. Lyu, Euler sums and Stirling sums, J. Number Theory 185 (2018), 160-193. https://doi.org/10.1016/j.jnt.2017.08.037 
  19. C. Xu, Some evaluation of parametric Euler sums, J. Math. Anal. Appl. 451 (2017), no. 2, 954-975. https://doi.org/10.1016/j.jmaa.2017.02.047 
  20. C. Xu, Some evaluations of infinite series involving parametric harmonic numbers, Int. J. Number Theory 15 (2019), no. 7, 1531-1546. https://doi.org/10.1142/S179304211950088X 
  21. C. Xu and W. Wang, Explicit formulas of Euler sums via multiple zeta values, J. Symbolic Comput. 101 (2020), 109-127. https://doi.org/10.1016/j.jsc.2019.06.009 
  22. C. Xu and J. Zhao, Variants of multiple zeta values with even and odd summation indices, Math. Z. 300 (2022), no. 3, 3109-3142. https://doi.org/10.1007/s00209-021-02889-2 
  23. H. Yuan and J. Zhao, Double shuffle relations of double zeta values and the double Eisenstein series at level N, J. Lond. Math. Soc. (2) 92 (2015), no. 3, 520-546. https://doi.org/10.1112/jlms/jdv042 
  24. D. Zagier, Values of Zeta Functions and Their Applications, First European Congress of Mathematics, Vol. II (Paris, 1992), 497-512, Progr. Math., 120, Birkhauser, Basel, 1994. 
  25. J. Zhao, Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values, Series on Number Theory and its Applications, 12, World Sci. Publ., Hackensack, NJ, 2016. https://doi.org/10.1142/9634