DOI QR코드

DOI QR Code

A SUFFICIENT CONDITION FOR HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE

  • Sumin Kim (Department of Mathematics and Institute of Basic Sciences Sungkyunkwan University) ;
  • Jongrak Lee (Department of Mathematics Sungkyunkwan University)
  • Received : 2023.09.26
  • Accepted : 2023.12.18
  • Published : 2024.07.31

Abstract

In this paper we consider the sufficient condition for hyponormal Toeplitz operators T𝛗 with non-harmonic symbols $${\varphi}(z)=\sum_{\ell=1}^{k}{\alpha}_{\ell}z^{{m_{\ell}}{\bar{z}}n_{\ell}}$$ with m-n = δ > 0 for all 1 ≤ ℓ ≤ k, and α ∈ ℂ on the Bergman spaces. In particular, we will observe the characteristics of the hyponormality of the Toeplitz operators T𝛗 according to the positional relationship of the coefficients α's.

Keywords

Acknowledgement

The first author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(No. RS-2023-00244646). The second author was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(No. 2021R1C1C1008713).

References

  1. S. Axler, Bergman spaces and their operators, in Surveys of some recent results in operator theory, Vol. I, 1-50, Pitman Res. Notes Math. Ser., 171, Longman Sci. Tech., Harlow, 1988. 
  2. C. C. Cowen, Hyponormal and subnormal Toeplitz operators, in Surveys of some recent results in operator theory, Vol. I, 155-167, Pitman Res. Notes Math. Ser., 171, Longman Sci. Tech., Harlow, 1988. 
  3. M. Fleeman and C. Liaw, Hyponormal Toeplitz operators with non-harmonic symbol acting on the Bergman space, Oper. Matrices 13 (2019), no. 1, 61-83. https://doi.org/10.7153/oam-2019-13-04 
  4. H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics, 199, Springer, New York, 2000. https://doi.org/10.1007/978-1-4612-0497-8 
  5. I. S. Hwang, Hyponormal Toeplitz operators on the Bergman space, J. Korean Math. Soc. 42 (2005), no. 2, 387-403. https://doi.org/10.4134/JKMS.2005.42.2.387 
  6. I. S. Hwang and J. Lee, Hyponormal Toeplitz operators on the Bergman spaces. II, Bull. Korean Math. Soc. 44 (2007), no. 3, 517-522. https://doi.org/10.4134/bkms.2007.44.3.517 
  7. S. Kim and J. Lee, Hyponormality of Toeplitz operators with non-harmonic symbols on the Bergman spaces, J. Inequal. Appl. 2021 (2021), Paper No. 67, 13 pp. https://doi.org/10.1186/s13660-021-02602-1 
  8. S. Kim and J. Lee, Hyponormal Toeplitz operators with non-harmonic symbols on the weighted Bergman spaces, Ann. Funct. Anal. 14 (2023), no. 1, Paper No. 14, 14 pp. https://doi.org/10.1007/s43034-022-00241-1 
  9. S. Kim and J. Lee, Remarks on hyponormal Toeplitz operators with nonharmonic symbols, Open Math. 21 (2023), no. 1, Paper No. 20230114, 8 pp. https://doi.org/10.1515/math-2023-0114 
  10. E. Ko and J. Lee, Remarks on hyponormal Toeplitz operators on the weighted Bergman spaces, Complex Anal. Oper. Theory 14 (2020), no. 8, Paper No. 83, 19 pp. https://doi.org/10.1007/s11785-020-01046-7 
  11. T. Le and B. Simanek, Hyponormal Toeplitz operators on weighted Bergman spaces, Integral Transforms Spec. Funct. 32 (2021), no. 5-8, 560-567. https://doi.org/10.1080/10652469.2020.1751153 
  12. Y. Lu and C. Liu, Commutativity and hyponormality of Toeplitz operators on the weighted Bergman space, J. Korean Math. Soc. 46 (2009), no. 3, 621-642. https://doi.org/10.4134/JKMS.2009.46.3.621 
  13. H. Sadraoui, Hyponormality of Toeplitz operators and composition operators, Thesis, Purdue University, 1992. 
  14. B. Simanek, Hyponormal Toeplitz operators with non-harmonic algebraic symbol, Anal. Math. Phys. 9 (2019), no. 4, 1613-1626. https://doi.org/10.1007/s13324-018-00279-2