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RIGIDITY RESULTS FOR COMPACT V-STATIC SPACE

Guangyue Huang and Botao Wang

Abstract. For (n ≥ 5)-dimensional compact V-static spaces with zero

radial Weyl curvature, we prove that ∇f is an eigenvector of Ricci tensor.

Furthermore, we also achieve that (Mn, g, f) is T-flat provided K
|∇f |2

f
>

0.

1. Introduction

A V-static space (Mn, g, f) is a Riemannian manifold (Mn, g) which admits
a smooth function f ∈ C∞(M) satisfying

fij = fRij −
1

n− 1
(fR+K)gij(1.1)

with a constant K. Here fij , Rij and R denote components of the Hessian of f ,
components of the Ricci curvature tensor and the scalar curvature, respectively.
It is worth noting that the existence of a nonzero solution to (1.1) guarantees
that the scalar curvature R must be constant. The geometrical significance
for this type of space has been extensively studied, and interested readers can
consult the references [4, 13,14](for harmonic Weyl curvature case, see [8]).

When K = 0, (1.1) becomes

fij = fRij −
R

n− 1
fgij ,

which is called the Vacuum static space. In fact, this space has been well
studied and many well known facts have been obtained, see [5, 7–12,15, 16, 18]
and the references therein.

Taking f = ϕ+ 1 and constant K = −R
n , (1.1) becomes

ϕij = ϕ
(
Rij −

R

n− 1
gij

)
+Rij −

R

n
gij .

Received August 31, 2023; Revised March 1, 2024; Accepted March 25, 2024.

2020 Mathematics Subject Classification. 53C21, 53C25.
Key words and phrases. Einstein, V-static spaces, zero radial Weyl curvature.
The research of the authors is supported by NSFC (No. 11971153) and Key Scientific

Research Project for Colleges and Universities in Henan Province (No. 23A110007).

©2024 Korean Mathematical Society

933



934 G. HUANG AND B. WANG

When Mn is compact, then the metric g is exactly a critical point of the total
scalar curvature functional defined on the space of Riemannian metrics with
unit volume. For the research in this direction, see [1, 2, 8, 17].

Throughout the article, inspired by [18], we consider rigidity results for (n ≥
5)-dimensional compact V-static space with K ̸= 0 and obtain the following
result:

Theorem 1.1. Let (Mn, g, f) be an (n ≥ 5)-dimensional compact V-static
space. If flWlijk = 0 (that is, zero radial Weyl curvature), then ∇f is an
eigenvector of Ricci tensor at each point in the set Ω = {x ∈ Mn;∇f(x) ̸= 0}.

Furthermore, we achieve the following result:

Theorem 1.2. Let (Mn, g, f) be an (n ≥ 5)-dimensional compact V-static

space with zero radial Weyl curvature. If K |∇f |2
f > 0, then the metric is T-flat

(that is, the T tensor defined by (2.7) is zero).

When n = 4, the classical identity

WijklWpjkl =
1

4
|W |gip

shows that the metric has zero radial Weyl curvature if and only if the metric
is locally conformally flat.

Remark 1.3. Ye [18] has studied the Vacuum static spaces with zero radial
Weyl curvature and gave some rigidity results. Our above theorems can be
seen as a generalization.

Remark 1.4. By virtue of the flat T tensor (see [3, 6, 16]) and constant scalar
curvature, we achieve the following local splitting result: If f is a smooth
solution f to equation (1.1), then

g = ds2 + (r(s))2gE

near the level set f−1(c), where ds = df
|df | , (r(s))

2gE = g|f−1(c) and gE is an

Einstein metric.

Acknowledgment. The authors would like to thank the referee for valuable
suggestions which made the paper more readable.

2. Preliminaries

Taking R̊ij = Rij − R
n gij , then (1.1) can be written as

fij = fR̊ij −
1

n(n− 1)
(fR+ nK)gij .(2.1)

It is well known that the Weyl curvature tensor and the Cotton tensor are
defined respectively as follows:

Rijkl = Wijkl +
1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)
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− R

(n− 1)(n− 2)
(gikgjl − gilgjk)

= Wijkl +
1

n− 2
(R̊ikgjl − R̊ilgjk + R̊jlgik − R̊jkgil)

+
R

n(n− 1)
(gikgjl − gilgjk)(2.2)

and

Cijk = R̊ij,k − R̊ik,j +
n− 2

2n(n− 1)
(R,kgij −R,jgki).(2.3)

From (2.3), it is easy to see that Cijk is skew-symmetric with respect to the
last two indices, that is Cijk = −Cikj and trace-free in any two indices:

Ciik = 0 = Ciji.(2.4)

In addition,

Cijk + Cjki + Ckij = 0(2.5)

and using the Ricci identity, one has

Cilk,l = Ckli,l, Cijl,l = Cjil,l, Clij,l = 0.(2.6)

Associated to (1.1), there is a (0.3)-tensor Tijk which can be written as

Tijk =
n− 1

n− 2
(R̊ikfj − R̊ijfk) +

1

n− 2
(gikR̊jl − gijR̊kl)fl.(2.7)

By calculation, we enable to observe that T satisfies the following properties:

Tijk = −Tikj , Tiik = 0 = Tiji,

Tijk + Tjki + Tkij = 0.

Take divergence on both sides of (2.2), we have

Wijkl,i = −n− 3

n− 2
Cjkl.(2.8)

Moreover, the Bach tensor is defined by

Bik =
1

n− 3
Wijkl,jl +

1

n− 2
WijklRjl.

Combining (2.8), the above equation can also be written

Bik =
1

n− 2
(−Cijk,j +WijklRjl).(2.9)

On the other hand, we also give a few commonly used lemmas:

Lemma 2.1. Let (Mn, g, f) be an (n ≥ 3)-dimensional compact Riemannian
manifold satisfying (1.1). Then the Cotton tensor, T -tensor and the Weyl
curvature tensor are related by

fCijk = Tijk + flWlijk.(2.10)
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Proof. The reader interested in the specific proof can refer [6] and we will not
repeat it here. □

Multiplying both sides of (2.10) by fi and utilizing the definition of T , one
has

fCijkfi = Tijkfi + flfiWlijk

= (R̊klfj − R̊jlfk)fl

= Pjk,(2.11)

where

Pjk := (R̊klfj − R̊jlfk)fl.(2.12)

Lemma 2.2 (see Lemma 5 of [18]). Let f be a smooth solution satisfying
equation (1.1). Then

RikTijkfj =
n− 2

2(n− 1)
|T |2

=
n− 1

n− 2

(
|∇f |2|R̊ic|2 − n

n− 1
R̊ic

2
(∇f,∇f)

)
.(2.13)

Lemma 2.3. Let (Mn, g, f) be an (n ≥ 3)-dimensional compact Riemannian
manifold satisfying (1.1). Then, we have

R̊ik,jfj = − f

n− 2
|R̊ic|2gik +

nf

n− 2
R̊ijR̊kj +

1

n− 1
(fR+ nK)R̊ik

− (n− 2)fBik + flCilk + Cklifl.(2.14)

Proof. From (2.10), one has

fCijk,j =− fjCijk + Tijk,j +Wlijk,jfl +Wlijkflj

=− fjCijk + Tijk,j −
n− 3

n− 2
Cklifl + fWlijkR̊lj .(2.15)

Further, taking the divergence of the tensor T , we derive

Tijk,j =
n− 1

n− 2
(R̊ik,jfj + R̊ik∆f − R̊ij,jfk − R̊ijfkj)

+
1

n− 2
(gikR̊jl,j − R̊kl,i)fl +

1

n− 2
(gikR̊jl − gijR̊kl)flj

=
n− 1

n− 2

{
R̊ik,jfj −

1

n− 1
R̊ik(fR+ nK)− R̊ij

[
fR̊jk − fR+ nK

n(n− 1)
gkj

]}
− 1

n− 2
R̊kl,ifl +

1

n− 2
(gikR̊jl − gijR̊kl)

[
fR̊lj −

fR+ nK

n(n− 1)
glj

]
=

n− 1

n− 2
R̊ik,jfj −

fR+ nK

n− 1
R̊ik − nf

n− 2
R̊ijR̊kj −

1

n− 2
R̊kl,ifl

+
f

n− 2
|R̊ic|2gik
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= R̊ik,jfj −
1

n− 2
Cklifl −

1

n− 1
(fR+ nK)R̊ik − nf

n− 2
R̊ijR̊kj

+
f

n− 2
|R̊ic|2gik,(2.16)

where we used R̊ij,j =
n−2
2n R,i = 0 and

R̊ik,jfj − R̊kl,ifl = −Cklifl.

Substituting (2.16) into (2.15) yields the desired estimate (2.14). □

3. Proof of results

3.1. Proof of Theorem 1.1

Under the condition of flWlijk = 0, (2.10) becomes

fCijk = Tijk.(3.1)

Taking the covariant derivative for (3.1) and using (2.6), we deduce that

fiCijk = Tijk,i

=
n− 1

n− 2
(R̊ikfj − R̊ijfk),i +

1

n− 2
(gikR̊jl − gijR̊kl),ifl

+
1

n− 2
(gikR̊jl − gijR̊kl)fli

=
n− 1

n− 2
(R̊ik,ifj − R̊ij,ifk) +

n− 1

n− 2
(R̊ikfji − R̊ijfki)

+
1

n− 2

[
(R̊jl,k − R̊kl,j)fl + (gikR̊jl − gijR̊kl)fli

]
=

n− 1

2n
(R,kfj −R,jfk) +

n− 1

n− 2

[
fR̊ikR̊ij −

1

n(n− 1)
(fR+ nK)R̊jk

− fR̊ijR̊ik +
1

n(n− 1)
(fR+ nK)R̊kj

]
+

1

n− 2

[
Cljkfl

− n− 2

2n(n− 1)
(R,kfj −R,jfk)−

1

n(n− 1)
(fR+ nK)(R̊jk − R̊kj)

+ f(R̊jlR̊lk − R̊klR̊lj)
]

=
n− 2

2(n− 1)
(R,kfj −R,jfk) +

1

n− 2
Cljkfl.(3.2)

Multiply both sides of (3.2) by f , one has

n− 3

n− 2
Pjk =

n− 2

2(n− 1)
(fR,kfj − fR,jfk) = 0,(3.3)

where we used the fact that R is a constant. From (3.3) we notice that Pjk = 0
when n ≥ 5. Without loss of generalization, at any fixed point p ∈ Ω, we
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can choose a local frame {ei}ni=1 such that ∇f ∥ e1, then f1 = |∇f | and
f2 = f3 = · · · = fn = 0. Therefore, by (2.12), we obtain

0 = Pjkfj

= |∇f |2R̊klfl − R̊jlfkflfj

= |∇f |2(R̊k1f1 − R̊11fk).(3.4)

Obviously, (3.4) shows that

R̊1k = 0,

where k ∈ {2 · · · n}. Thus, we have that ∇f is an eigenvector of R̊ic and the
proof is finished.

3.2. Proof of Theorem 1.2

First we give a couple of lemmas, which will be useful in the subsequent
proof process.

Lemma 3.1. Let (Mn, g, f) be an (n ≥ 5)-dimensional compact Riemannian
manifold satisfying (1.1). Then for Pjk given by (2.12),

Pjk,i =
n− 2

n(n− 1)
(fR+ nK)Tijk − 1

n− 2
f |R̊ic|2(gikfj − gijfk)

+
2n− 2

n− 2
fR̊il(R̊lkfj − R̊jlfk)− (n− 2)f(Bikfj −Bijfk)

− f(R̊jlR̊ik − R̊klR̊ij)fl + (Cilkfj − Ciljfk)fl + 2(Cklifj − Cjlifk)fl.(3.5)

Proof. From (2.12) we directly calculate

Pjk,i = (fijR̊kl + fjR̊kl,i − fikR̊jl − fkR̊jl,i)fl + (fjR̊kl − fkR̊jl)fil

= − 1

n(n− 1)
(fR+ nK)R̊klgijfl + fR̊klR̊ijfl + (R̊kl,ifj − R̊jl,ifk)fl

+
1

n(n− 1)
(fR+ nK)R̊jlgikfl − fR̊jlR̊ikfl

+ (fjR̊kl − fkR̊jl)[fR̊li −
1

n(n− 1)
(fR+ nK)gli]

= − 1

n(n− 1)
(fR+ nK)(R̊klgij − R̊jlgik)fl + f(R̊klR̊ij − R̊jlR̊ik)fl

+ (R̊kl,ifj − R̊jl,ifk)fl −
1

n(n− 1)
(fR+ nK)(fjR̊ki − fkR̊ji)

+ fR̊li(fjR̊kl − fkR̊jl).(3.6)

Applying (2.9) and (2.14), we derive that

(R̊kl,ifj − R̊jl,ifk)fl

= Ckliflfj − Cjliflfk + R̊ki,lflfj − R̊ji,lflfk



V-STATIC SPACE 939

= Ckliflfj − Cjliflfk + fj

{
− 1

n− 2
f |R̊ic|2gik +

n

n− 2
fR̊ilR̊lk

+
1

n− 1
(fR+ nK)R̊ik − (n− 2)fBik + Cilkfl + Cklifl

}
− fk

{
− 1

n− 2
f |R̊ic|2gij +

n

n− 2
fR̊ilR̊jl +

1

n− 1
(fR+ nK)R̊ij

− (n− 2)fBij + Ciljfl + Cjlifl

}
= − 1

n− 2
f |R̊ic|2(fjgik − fkgij) +

n

n− 2
f(R̊klfj − R̊jlfk)R̊il

+
1

n− 1
(fR+ nK)(R̊ikfj − R̊ijfk)− (n− 2)f(Bikfj −Bijfk)

+ 2(Cklifj − Cjlifk)fl + (Cilkfj − Ciljfk)fl.(3.7)

Putting (3.7) into (3.6) gives the equation (3.5). □

Corollary 3.2. Let (Mn, g, f) be an (n ≥ 5)-dimensional compact Riemannian

manifold satisfying (1.1). Assume R̊ic(∇f) = µ1∇f in the set Ω = {x ∈
Mn;∇f(x) ̸= 0}, then

(n− 2)fBik

= −
[ 1

n− 1
µ1(fR+ nK) + f |R̊ic|2

] fi
|∇f |

fk
|∇f |

+
2n− 2

n− 2
fR̊ilR̊lk

+ 3Cklifl −
[
fµ1 −

1

n
(fR+ nK)

]
R̊ik

+
[ 1

n(n− 1)
(fR+ nK)µ1 −

1

n− 2
f |R̊ic|2

]
gik.(3.8)

Proof. Multiply both sides of (2.5) by fi, one has

Cijkfi + Ckijfi + Cjkifi = 0,(3.9)

By (2.11) and the set f−1(0) has the measure zero, we obtain

Cijkfi = 0.

Thus, (3.9) becomes

Ckijfi = Cjikfi.(3.10)

From (3.5) and the fact that P disappears we get the following

0 =
n− 2

n(n− 1)
(fR+ nK)Tijk − 1

n− 2
f |R̊ic|2(gikfj − gijfk)

+
2n− 2

n− 2
fR̊il(R̊lkfj − R̊jlfk)− f(R̊jlR̊ik − R̊klR̊ij)fl

− (n− 2)f(Bikfj −Bijfk) + (Cilkfj − Ciljfk)fl + 2(Cklifj − Cjlifk)fl.
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Contract the above formula with respect to i and j, and combining with the
assumption R̊ic(∇f) = µ1∇f , we have

(n− 2)Bikfi =
1

n− 2
(nµ2

1 − (n− 1)|R̊ic|2)fk.(3.11)

Moreover, according to the definition of Tijk in (2.7), it holds that

Tijkfj =
n− 1

n− 2
(|∇f |2R̊ik − R̊ijfkfj) +

1

n− 2
(gikR̊jlfj − fiR̊kl)fl

=
n− 1

n− 2
|∇f |2R̊ik − n

n− 2
µ1fifk +

1

n− 2
µ1|∇f |2gik.(3.12)

Thus, it follows from (3.5) that

0 = Pjk,ifj

=
n− 2

n(n− 1)
(fR+ nK)Tijkfj −

1

n− 2
|∇f |2f |R̊ic|2gik +

1

n− 2
f |R̊ic|2fifk

+
2n− 2

n− 2
|∇f |2fR̊ilR̊lk − fµ1|∇f |2R̊ik + (n− 2)fBijfkfj

− (n− 2)|∇f |2fBik + 3|∇f |2Cklifl −
n

n− 2
µ2
1ffifk,

which combines with (3.11) and (3.12) to give

0 = − (n− 2)|∇f |2fBik +
1

n(n− 1)
(fR+ nK)

[
(n− 1)|∇f |2R̊ik

− nµ1fifk + µ1|∇f |2gik
]
− 1

n− 2
|∇f |2f |R̊ic|2gik

+
1

n− 2
f |R̊ic|2fifk − fµ1|∇f |2R̊ik +

2n− 2

n− 2
|∇f |2fR̊ilR̊lk

+
n

n− 2
µ2
1ffifk + 3|∇f |2Cklifl −

n− 1

n− 2
f |R̊ic|2fifk

− n

n− 2
µ2
1ffifk

= − (n− 2)|∇f |2fBik + 3|∇f |2Cklifl

−
[
fµ1 −

1

n
(fR+ nK)

]
|∇f |2R̊ik

−
[ 1

n− 1
µ1(fR+ nK) + f |R̊ic|2

]
fifk +

2n− 2

n− 2
|∇f |2fR̊ilR̊lk

+
[ 1

n(n− 1)
(fR+ nK)µ1 −

1

n− 2
f |R̊ic|2

]
|∇f |2gik,(3.13)

and the estimate (3.8) follows. □

Substituting (3.8) into (2.14) gives directly the following
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Corollary 3.3. Let (Mn, g, f) be an (n ≥ 5)-dimensional compact Riemannian

manifold satisfying (1.1). Assume R̊ic(∇f) = µ1∇f in the set Ω = {x ∈
Mn;∇f(x) ̸= 0}, then

R̊ik,sfs = − Cklifl +
[ 1

n− 1
(fR+ nK)µ1 + f |R̊ic|2

] fi
|∇f |

fk
|∇f |

− fR̊ilR̊lk

− 1

n(n− 1)
(fR+ nK)µ1gik +

[
fµ1 +

1

n(n− 1)
(fR+ nK)

]
R̊ik.(3.14)

On the other hand, by virtue of (2.7), it holds that

Tijk,sfs =
n− 1

n− 2
(R̊ik,sfj + R̊ikfjs − R̊ij,sfk − R̊ijfks)fs

+
1

n− 2
(gikR̊jl,s − gijR̊kl,s)fsfl +

1

n− 2
(gikR̊jl − gijR̊kl)flsfs.(3.15)

From (2.1) and R̊ijfj = µ1fi, we deduce

Tijk,sfs =
n− 1

n− 2
(R̊ik,sfsfj − R̊ij,sfsfk) +

1

n− 2
(gikR̊jl,s − gijR̊kl,s)fsfl

+
(
fµ1 −

fR+ nK

n(n− 1)

)
Tijk

=
n− 1

n− 2

{
fj

[
− Cklifl −

1

n(n− 1)
(fR+ nK)µ1gik − fR̊ilR̊lk

+
(
fµ1 +

1

n(n− 1)
(fR+ nK)

)
R̊ik

]
− fk

[
− Cjlifl − fR̊ilR̊lj

− 1

n(n− 1)
(fR+ nK)µ1gij +

(
fµ1 +

1

n(n− 1)
(fR+ nK)

)
R̊ij

]}
+

1

n− 2

{
gikfl

[
− Cjplfp +

(
fµ1 +

1

n(n− 1)
(fR+ nK)

)
R̊lj

+
( 1

n− 1
(fR+ nK)µ1 + f |R̊ic|2

) fl
|∇f |

fj
|∇f |

− fR̊lpR̊pj

− 1

n(n− 1)
(fR+ nK)µ1glj

]
− gijfl

[
− Ckplfp − fR̊kpR̊pl

− 1

n(n− 1)
(fR+ nK)µ1gkl +

(
fµ1 +

1

n(n− 1)
(fR+ nK)

)
R̊kl

+
( (fR+ nK)µ1

n− 1
+ f |R̊ic|2

) fk
|∇f |

fl
|∇f |

]}
+

(
fµ1 −

fR+ nK

n(n− 1)

)
Tijk

= − n− 1

n− 2
(Cklifj − Cjlifk)fl −

µ1

n(n− 2)
(fR+ nK)(fjgik − fkgij)

+
(
fµ1 −

fR+ nK

n(n− 1)

)
Tijk +

n− 1

n− 2

(
fµ1 +

1

n(n− 1)
(fR+ nK)

)
× (fjR̊ik − fkR̊ij)−

n− 1

n− 2
fR̊il(fjR̊lk − fkR̊lj)
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+
1

n− 2

[ 1

n− 1
(fR+ nK)µ1 + f |R̊ic|2

]
(fjgik − fkgij)

− f

n− 2
µ2
1(fjgik − fkgij) +

µ1

n− 2

[
fµ1 +

1

n(n− 1)
(fR+ nK)

]
× (fjgik − fkgij)−

µ1

n(n− 1)(n− 2)
(fR+ nK)(fjgik − fkgij)

= 2µ1fTijk − n− 1

n− 2
(Cklifj − Cjlifk)fl −

n− 1

n− 2
fR̊il(fjR̊lk − fkR̊lj)

+
f

n− 2
(|R̊ic|2 − µ2

1)(fjgik − fkgij),(3.16)

where the second equality follows from (3.14).

As a result, we get the following.

Corollary 3.4. Let (Mn, g, f) be an (n ≥ 5)-dimensional compact Riemannian

manifold satisfying (1.1). Assume R̊ic(∇f) = µ1∇f in the set Ω = {x ∈
Mn,∇f(x) ̸= 0}, then

Tijk,sfs = 2µ1fTijk − n− 1

n− 2
(Cklifj − Cjlifk)fl −

n− 1

n− 2
fR̊il(fjR̊lk − fkR̊lj)

+
f

n− 2
(|R̊ic|2 − µ2

1)(fjgik − fkgij).(3.17)

In the following we give two basic facts (see Lemma 21 of [18]):

Lemma 3.5. Let (Mn, g) be a Riemannian manifold. Then

Cijk,l + Cikl,j + Cilj,k = RjpWpikl +RkpWpilj +RlpWpijk.(3.18)

Using (3.18), a direct calculation yields

Cjli,k − Ckli,j = Cljk,i − Cijk,l −RipWpljk +RjpWpkil

−RkpWpjil +RlpWpijk.(3.19)

Furthermore, we also derive the following:

Lemma 3.6. Let (Mn, g, f) be an (n ≥ 5)-dimensional compact V-static space
with zero radial Weyl curvature. Then, we have

R̊ikCijkfj =
n− 2

2(n− 1)
f |C|2,(3.20)

fWijklR̊lj =
n− 3

n− 2
Ckpifp,(3.21)

CijkfjCipkfp =
1

2
|∇f |2|C|2,(3.22)

(n− 2)BikTijkfj =
3

2
|∇f |2|C|2 + 2(n− 1)

n− 2
R̊ilR̊lkTijkfj



V-STATIC SPACE 943

− n− 2

2(n− 1)

[
fµ1 −

1

n
(fR+ nK)

]
f |C|2.(3.23)

Proof. From (2.7), (2.13) and (3.1), we have

fR̊ikCijkfj = R̊ikTijkfj =
n− 2

2(n− 1)
|T |2

=
n− 2

2(n− 1)
f2|C|2,

which combines the fact that the lever set f−1(0) has measure zero infers (3.20).
Applying flWlijk = 0, it holds that

0 = Wlijk,jfl +Wlijkflj

= − n− 3

n− 2
Ckpifp +Wlijk

[
fR̊lj −

1

n(n− 1)
(fR+ nK)glj

]
= − n− 3

n− 2
Ckpifp + fWlijkR̊lj ,

and this leads to (3.21). From (2.7), (3.20) and the fact that the lever set
f−1(0) has measure zero, we deduce (3.22) from

fCijkfjCipkfp = TijkfjCipkfp

=
n− 1

n− 2
|∇f |2R̊ikCipkfp

=
1

2
f |∇f |2|C|2.

Multiply both sides of (3.8) by Cijkfj , we obtain

(n− 2)BikTijkfj

= (n− 2)fBikCijkfj

= 3CkliflCijkfj +
2(n− 1)

n− 2
R̊ilR̊lkTijkfj −

[
fµ1 −

1

n
(fR+ nK)

]
R̊ikCijkfj

=
3

2
|∇f |2|C|2 + 2(n− 1)

n− 2
R̊ilR̊lkTijkfj −

n− 2

2(n− 1)

[
fµ1 −

1

n
(fR+ nK)

]
f |C|2.

This completes the proof of Lemma 3.6. □

To prove T = 0, motivated by [18], we need to establish a point to point
formula under the condition of flWlijk = 0 and the equation (1.1):

Proposition 3.7. Let (Mn, g, f) be an (n ≥ 5)-dimensional compact V-static
space with zero radial Weyl curvature. Then,

2(n− 1)

n− 2
R̊ilR̊lkTijkfj + µ1|T |2

=
n− 3

n− 2

[
|∇f |2|C|2 + 2(R+ nKf−1)

n(n− 1)
|T |2

]
.(3.24)
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Proof. Using the method of [18], we first calculate ∆(flWlijk) as follows:

∆(flWlijk) = fl∆Wlijk + 2flsWlijk,s + f,lssWlijk

= fl∆Wlijk + 2fR̊lsWlijk,s −
2

n(n− 1)
(fR+ nK)Wlijk,l

− R

n− 1
flWlijk + fpR̊plWlijk +

R

n
flWlijk.(3.25)

From flWlijk = 0, (3.1), R̊ic(∇f) = µ1∇f and (28) of [18], (3.25) becomes

0 = fl(Cjli,k − Ckli,j)− fl(B ⃝∧ g)lijk + 2fR̊lsWlijk,s

+
2(n− 3)

n(n− 1)(n− 2)

(
fR+ nK

)
Cijk

= fl(Cjli,k − Ckli,j) +Bijfk −Bikfj + (Blkgij −Bljgik)fl

+ 2fR̊lsWlijk,s +
2(n− 3)

n(n− 1)(n− 2)

(
fR+ nK

)
Cijk.(3.26)

Applying (1.1) and (3.19), we have

fl(Cjli,k − Ckli,j) = (Cljk,i − Cijk,l)fl

= (Cljkfl)i − Cljkfli − Cijk,lfl

= − Cljk

[
fR̊li −

1

n(n− 1)
(fR+ nK)gli

]
− Cijk,lfl

= − TljkR̊li +
1

n(n− 1)
(fR+ nK)Cijk − Cijk,lfl,(3.27)

where the first equality follows from flWlijk = 0 and the last equality from
(3.1). Substituting (3.27) into (3.26), we obtain

0 = − Cijk,lfl −
n− 1

n− 2
R̊li(R̊lkfj − R̊ljfk) +Bijfk −Bikfj

+ (gijBlk − gikBlj)fl + 2fR̊lsWlijk,s +
3n− 8

n(n− 1)(n− 2)

(
fR+ nK

)
Cijk

− 1

n− 2
R̊li(glkR̊jp − gljR̊kp)fp.

By contracting with Tijk and combining (3.23) derive that

0 = − 1

2
f⟨∇f,∇|C|2⟩ − 2(n− 1)

n− 2
R̊liR̊lkTijkfj − 2BikTijkfj

+ 2fR̊lsTijkWlijk,s −
µ1

n− 1
|T |2 + 3n− 8

n(n− 1)(n− 2)

(
fR+ nK

)
f |C|2

= − 1

2
f⟨∇f,∇|C|2⟩ − 3

n− 2
|∇f |2|C|2

− 2n(n− 1)

(n− 2)2
R̊ilR̊lkTijkfj +

2n− 6

n(n− 1)(n− 2)

(
fR+ nK

)
f |C|2
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+ 2fR̊lsTijkWlijk,s.(3.28)

Let ϕ be a C1 smooth real function with compact support on M . Multiplying
both sides of (3.28) by ϕ and integrating over M , we have

0 = − 1

2

∫
M

f⟨∇f,∇|C|2⟩ϕ+ 2

∫
M

fR̊lsTijkWlijk,sϕ

+
2n− 6

n(n− 1)(n− 2)

∫
M

(
fR+ nK

)
f |C|2ϕ

− 2n(n− 1)

(n− 2)2

∫
M

R̊ilR̊lkTijkfjϕ− 3

n− 2

∫
M

|∇f |2|C|2ϕ.(3.29)

On the other hand, using the divergence theorem and (1.1), we deduce that

−1

2

∫
M

f⟨∇f,∇|C|2⟩ϕ =
1

2

∫
M

|∇f |2|C|2ϕ+
1

2

∫
M

⟨∇f,∇ϕ⟩f |C|2

− 1

2(n− 1)

∫
M

(fR+ nK)f |C|2ϕ,(3.30)

and from (2.1), (2.7), (3.1) and (3.21), we also obtain

2

∫
M

fR̊lsTijkWlijk,sϕ

=
4(n− 1)

n− 2

∫
M

fR̊ikR̊lsfjWlijk,sϕ

= − 4(n− 1)

n− 2

∫
M

R̊ik

[
fR̊js −

1

n(n− 1)
(fR+ nK)gjs

]
fWlijkR̊lsϕ

= − 4(n− 1)

n− 2

∫
M

R̊ik

[
fR̊jsR̊ls −

1

n(n− 1)
(fR+ nK)R̊lj

]
fWlijkϕ

= − 4(n− 1)(n− 3)

(n− 2)2

∫
M

[
fR̊jsR̊ls −

1

n(n− 1)
(fR+ nK)R̊lj

]
Clpjfpϕ

=
4(n− 3)

n(n− 2)2

∫
M

(fR+ nK)R̊ljClpjfpϕ

− 4(n− 1)(n− 3)

(n− 2)2

∫
M

R̊jsR̊lsTlpjfpϕ

=
2(n− 3)

n(n− 1)(n− 2)

∫
M

(fR+ nK)f |C|2ϕ

− 4(n− 1)(n− 3)

(n− 2)2

∫
M

R̊klR̊ilTijkfjϕ.(3.31)

Inserting (3.30) and (3.31) into (3.29), it is easy to get

0 =
n− 8

2(n− 2)

∫
M

|∇f |2|C|2ϕ− 6(n− 1)

n− 2

∫
M

R̊ilR̊lkTijkfjϕ

− (n− 4)(n− 6)

2n(n− 1)(n− 2)

∫
M

(fR+ nK)f |C|2ϕ+
1

2

∫
M

⟨∇f,∇ϕ⟩f |C|2.(3.32)
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In addition, by contracting with Tijk in (3.17) and combining with (3.22), one
has

1

2
⟨∇f,∇|T |2⟩ = 2µ1f |T |2 −

2(n− 1)

n− 2
TijkfjCilkfl −

2(n− 1)

n− 2
fR̊ilR̊lkTijkfj

= 2µ1f |T |2 −
n− 1

n− 2
f |∇f |2|C|2 − 2(n− 1)

n− 2
fR̊ilR̊lkTijkfj ,(3.33)

which implies that

1

2
f⟨∇f,∇|C|2⟩ = 2µ1|T |2 −

2(n− 1)

n− 2
R̊ilR̊lkTijkfj −

2n− 3

n− 2
|∇f |2|C|2.(3.34)

Hence,

1

2

∫
M

f⟨∇f,∇|C|2⟩ϕ

= 2

∫
M

µ1|T |2ϕ− 2(n− 1)

n− 2

∫
M

R̊ilR̊lkTijkfjϕ

− 2n− 3

n− 2

∫
M

|∇f |2|C|2ϕ.(3.35)

Applying the divergence theorem, (3.35) becomes

0 = 2

∫
M

µ1|T |2ϕ+
1

2

∫
M

f⟨∇f,∇ϕ⟩|C|2 − 1

2(n− 1)

∫
M

(fR+ nK)f |C|2ϕ

− 3n− 4

2(n− 2)

∫
M

|∇f |2|C|2ϕ− 2(n− 1)

n− 2

∫
M

R̊ilR̊lkTijkfjϕ,

which combines (3.32) to derive

0 = − 4(n− 1)

n− 2

∫
M

R̊ilR̊lkTijkfjϕ+
4(n− 3)

n(n− 1)(n− 2)

∫
M

(fR+ nK)f |C|2ϕ

− 2

∫
M

µ1|T |2ϕ+
2(n− 3)

n− 2

∫
M

|∇f |2|C|2ϕ.

According to the arbitrariness of ϕ, we complete the proof of the Proposition
3.7. □

We will use the Proposition 3.7 to prove that T = 0. Inserting (3.24) into
(3.33), we have

1

2
⟨∇f,∇|T |2⟩ = 3µ1f |T |2 − 2f |∇f |2|C|2 − 2(n− 3)

n(n− 1)(n− 2)
(fR+ nK)|T |2,

which combines (3.1) infers that

1

2
f⟨∇f,∇|T |2⟩

=
[
3µ1f

2 − 2|∇f |2 − 2(n− 3)

n(n− 1)(n− 2)
(f2R+ nKf)

]
|T |2.(3.36)
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Taking h = f4|T |2, we deduce

⟨∇f,∇h⟩ = 2
[
3µ1 −

2(n− 3)

n(n− 1)(n− 2)
(R+ nKf−1)

]
fh.(3.37)

To go further, we take divergence on both sides of R̊ijfj = µ1fi and using (2.1)
to derive that

f |R̊ic|2 = ⟨∇µ1,∇f⟩ − 1

n− 1
µ1(fR+ nK).(3.38)

Differentiating along ∇f for both sides of (3.37), we have

∇2h(∇f,∇f)−
[
5µ1 +

3n− 10

n(n− 1)(n− 2)
(R+ nKf−1)

]
f⟨∇f,∇h⟩

= 2
[
3µ1 −

2(n− 3)

n(n− 1)(n− 2)
(R+ nKf−1)

]
|∇f |2h+ 6⟨∇µ1,∇f⟩fh

+
4(n− 3)

(n− 1)(n− 2)
Kf−1|∇f |2h.(3.39)

Next, we will prove T ≡ 0 by a contradiction. Otherwise, h attains its
maximum at a point x0 ∈ M and h(x0) > 0. Thus, we observe from (3.37)
that

3µ1(x0)−
2(n− 3)

n(n− 1)(n− 2)
(R+ nKf−1)(x0) = 0.(3.40)

From (3.38) and (3.39), we observe

0 ≥
{
6
[
|R̊ic|2 + 2(n− 3)

3n(n− 1)2(n− 2)
(R+ nKf−1)2

]
f2h

+
4(n− 3)

(n− 1)(n− 2)
Kf−1|∇f |2h

}
(x0)

≥ 4(n− 3)

(n− 1)(n− 2)
(Kf−1|∇f |2h)(x0),(3.41)

which combined with Kf−1|∇f |2 > 0 shows that[ 4(n− 3)

(n− 1)(n− 2)
Kf−1|∇f |2h

]
(x0) = 0.(3.42)

This is impossible. Therefore, T ≡ 0. This completes the proof of Theorem
1.2.
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