Bull. Korean Math. Soc. 61 (2024), No. 4, pp. 907–915 https://doi.org/10.4134/BKMS.b230293 pISSN: 1015-8634 / eISSN: 2234-3016

A NOTE ON REPRESENTATION NUMBERS OF QUADRATIC FORMS MODULO PRIME POWERS

Ran Xiong

ABSTRACT. Let f be an integral quadratic form in k variables, F the Gram matrix corresponding to a Z-basis of \mathbb{Z}^k . For $r \in F^{-1}\mathbb{Z}^k$, a rational number n with $f(r) \equiv n \mod 2$ and a positive integer c, set $N_f(n,r;c) := \sharp \{x \in \mathbb{Z}^k / c\mathbb{Z}^k : f(x+r) \equiv n \bmod c\}.$ Siegel showed that for each prime p , there is a number w depending on r and n such that $N_f(n, r; p^{\nu+1}) = p^{k-1} N_f(n, r; p^{\nu})$ holds for every integer $\nu > w$ and gave a rough estimation on the upper bound for such w . In this short note, we give a more explicit estimation on this bound than Siegel's.

1. Introduction and statement

Let f be an integral quadratic form in k variables, F the Gram matrix corresponding to a Z-basis of \mathbb{Z}^k . For $r \in F^{-1}\mathbb{Z}^k$, a rational number n with $f(r) \equiv n \mod \mathbb{Z}$ and a positive integer c, set

(1.1)
$$
N_f(n, r; c) := \sharp \{ x \in \mathbb{Z}^k / c\mathbb{Z}^k : f(x+r) \equiv n \mod c \}.
$$

In his seminal work for representation numbers of quadratic forms, Siegel [\[5\]](#page-8-0) in fact proved that for a nonzero n ,

(1.2)
$$
N_f(n, r; p^{\nu+1}) = p^{k-1} N_f(n, r; p^{\nu})
$$
 when $\nu > \nu_p(2\omega_r^2 n^2)$

(see [\[5,](#page-8-0) Hilfssatz 13]. For a clearer form one can also refer to [\[3,](#page-8-1) Lemma 5]). Here ω_r is the smallest positive integer such that $\omega_r r \in \mathbb{Z}^k$. In this paper, by computing $N_f(n,r;p^{\nu+1})$ with the method of Gauss sums we improve the Siegel's result. Roughly saying we find that

$$
N_f(n, r; p^{\nu+1}) = p^{k-1} N_f(n, r; p^{\nu})
$$
 when $\nu > \nu_p(2\omega_r^2 n)$.

We explain the above statement more explicitly by the language of lattice. Recall that an even *lattice* $\underline{L} = (L, \beta)$ is a free Z-module L of finite rank $rk(\underline{L})$, equipped with a non-degenerate symmetric \mathbb{Z} -valued bilinear form β such that $\beta(x) := \beta(x, x)/2 \in \mathbb{Z}$ for all $x \in L$. Note that $\beta: L \to \mathbb{Z}$ is a quadratic form, i.e., $\beta(ax) = a^2\beta(x)$ for all $a \in \mathbb{Z}$ and $x \in L$. In the following by writing an even

©2024 Korean Mathematical Society

907

Received May 14, 2023; Revised February 22, 2024; Accepted February 29, 2024.

²⁰²⁰ Mathematics Subject Classification. 11D9, 11D85.

Key words and phrases. Representation numbers of quadratic forms, Gauss sums, lattices.

lattice (L, β) , β refers to the quadratic form which is induced by the symmetric Z-valued bilinear form. For example, (\mathbb{Z}, x^2) is the lattice $(\mathbb{Z}, (x, y) \to 2xy)$.

The dual of lattice \underline{L} is

$$
L^{\sharp} = \{ y \in L \otimes_{\mathbb{Z}} \mathbb{Q} : \beta(x, y) \in \mathbb{Z} \quad \text{for all } x \in L \}.
$$

It is well known that $|L^{\sharp}/L|$ equals to $|\det(\underline{L})|$, where $\det(\underline{L})$ is the determinant of the Gram matrix corresponding to any \mathbb{Z} -basis of L thus L^{\sharp}/L is a finite abelian group. Define $\Delta(\underline{L})$, $\ell(\underline{L})$, the discriminant of \underline{L} and the level of \underline{L} as follows:

$$
\Delta(\underline{L}) := \begin{cases} (-1)^{\lfloor \frac{\mathrm{rk}(\underline{L})}{2} \rfloor} \det(\underline{L}) & \text{if } \mathrm{rk}(\underline{L}) \text{ is even;} \\ (-1)^{\lfloor \frac{\mathrm{rk}(\underline{L})}{2} \rfloor} 2 \det(\underline{L}) & \text{if } \mathrm{rk}(\underline{L}) \text{ is odd,} \end{cases}
$$

$$
\ell(\underline{L}) := \min \{ \ell \in \mathbb{N} : \ell \beta(r) \in \mathbb{Z} \quad \text{for all } r \in L^{\sharp} \}.
$$

For an element $r \in L^{\sharp}$, let $\omega_{\underline{L}}(r)$ be the order of r in L^{\sharp}/L . Obviously $\ell(\underline{L})|\Delta(\underline{L})$. For any element $x \in L^{\sharp}$, we have that

$$
\beta(\ell(\underline{L})r, x) = \ell(\underline{L})\beta(r, x) = \ell(\underline{L})\left(\beta(r) + \beta(y) - \beta(r + y)\right) \in \mathbb{Z},
$$

which implies that $\ell(\underline{L})r \in L$ thus $\omega_L(r)|\ell(\underline{L})$.

Under the same notations as the above, we rewrite [\(1.1\)](#page-0-0) as

(1.3)
$$
N_{\underline{L}}(n,r;c) := \sharp\{x \in L/cL : \beta(x+r) \equiv n \bmod c\}.
$$

We put

$$
g_{\underline{L}}(n,r;c):=\sum_{d\mid c}\mu(d)d^{\operatorname{rk}(\underline{L})-1}N_{\underline{L}}(n,r;c/d).
$$

Then the Siegel's result is reformulated as

(1.4)
$$
g_{\underline{L}}(n,r;p^{\nu}) = 0 \text{ when } \nu > \nu_p(2p\omega_{\underline{L}}(r)^2n^2).
$$

Strictly speaking we will prove the following theorem:

Theorem 1.1. Let $\underline{L} = (L, \beta)$ be an even lattice, r an element in the dual of \underline{L} and n a rational number with $\beta(r) \equiv n \mod \mathbb{Z}$.

- (1) For a prime $p | \omega_{\underline{L}}(r)$, we have $g_{\underline{L}}(n,r;p^{\nu}) = 0$ when $\nu > \nu_p(2\ell(\underline{L}))$.
- (2) Let p be a prime with $p \nmid \omega_L(r)$.
	- (2i) If $n \neq 0$ then $g_{\underline{L}}(n,r;p^{\nu}) = 0$ when $\nu > \nu_p(8p\omega_{\underline{L}}(r)^2n)$.
	- (2ii) We have

$$
g_{\underline{L}}(0,r;p^{\nu+2}) = p^{\text{rk}(\underline{L})}g_{\underline{L}}(0,r;p^{\nu}) \quad when \ \nu > \nu_p(2\ell(\underline{L})).
$$

We now fix basic notations throughout this paper. For a prime p , \mathbb{Z}_p stands for the ring of p-adic integers. For a rational number a, $\nu_p(a)$ is the p-adic

valuation of the rational number a . The bracket (\cdot) is the Kronecker symbol, i.e., for an odd prime $p, \left(\frac{1}{p}\right)$ is the usual Legendre symbol, for $p = 2$,

$$
\left(\frac{a}{2}\right) := \begin{cases} 0 & \text{if } a \equiv 0 \bmod 2; \\ 1 & \text{if } a \equiv \pm 1 \bmod 8; \\ -1 & \text{if } a \equiv \pm 3 \bmod 8. \end{cases}
$$

For an integer c and a complex number t, we write $e_c(t) := e^{\frac{2\pi i t}{c}}$.

2. Proof of Theorem [1.1](#page-1-0)

Since g_L is multiplicative in the variable c, we just need to study $g_L(n, r; p^{\nu})$ for prime powers p^{ν} . For studying we express $g_{\underline{L}}(n,r;p^{\nu})$ in terms of Gauss sums as follows:

(2.1)
$$
g_{\underline{L}}(n,r;p^{\nu}) = \frac{1}{p^{\nu}} \sum_{\substack{d \bmod p^{\nu} \\ \gcd(d,p)=1}} \sum_{x \in L/p^{\nu}L} e_{p^{\nu}} \left(d(\beta(x+r)-n) \right).
$$

Firstly we have

Lemma 2.1. Under the same notations as before, we have the following: (1) If $p \mid \omega_L(r)$, then

(2.2)
$$
g_{\underline{L}}(n,r;p^{\nu}) = \frac{1}{p^{\nu}} \sum_{\substack{d \bmod p^{\nu} \\ \gcd(d,p)=1}} e_{p^{\nu}}(dn_r) \sum_{x \in L/p^{\nu}L} e_{p^{\nu}}(d(\beta(x) + \beta(r,x))),
$$

where
$$
n_r = \beta(r) - n
$$
.
\n(2) If $p \nmid \omega_{\underline{L}}(r)$, then
\n(2.3) $g_{\underline{L}}(n, r; p^{\nu}) = \frac{1}{p^{\nu}} \sum_{\substack{d \bmod p^{\nu} \\ \gcd(d, p) = 1}} e_{p^{\nu}} (-d\omega_{\underline{L}}(r)^2 n) \sum_{x \in L/p^{\nu}L} e_{p^{\nu}} (d\beta(x)).$

Proof. The assertion (1) is obvious. For (2), since $p \nmid \omega_L(r)$, one has

$$
N_{\underline{L}}(n,r;p^{\nu}) = \sharp\{x \in L/p^{\nu}L : \beta(x+r) \equiv n \bmod p^{\nu}\}
$$

\n
$$
= \sharp\{x \in L/p^{\nu}L : \omega_{\underline{L}}(r)^{2}\beta(x+r) \equiv \omega_{\underline{L}}(r)^{2}n \bmod p^{\nu}\}
$$

\n
$$
= \sharp\{x \in L/p^{\nu}L : \beta(\omega_{\underline{L}}(r)x + \omega_{\underline{L}}(r)r)) \equiv \omega_{\underline{L}}(r)^{2}n \bmod p^{\nu}\}
$$

\n
$$
= \sharp\{x \in L/p^{\nu}L : \beta(x) \equiv \omega_{\underline{L}}(r)^{2}n \bmod p^{\nu}\}
$$

\n
$$
= N_{\underline{L}}(\omega_{\underline{L}}(r)^{2}n, 0; p^{\nu}),
$$

where for the fourth identity, we replace $\omega_{\underline{L}}(r)x + \omega_{\underline{L}}(r)r$ by x. Now one can immediately see (2) is true. \square

For proving the main theorem, we need some auxiliary lemmas. The following lemma is a key to prove (1) of Theorem [1.1.](#page-1-0)

910 R. XIONG

Lemma 2.2. Let $\underline{L} = (L, \beta)$ be an even lattice, r an element in the dual of \underline{L} and p a prime with $p \mid \omega_L(r)$. Then for each integer $\nu > \nu_p(2\ell(\underline{L}))$, there exists an element y of L such that $p^{\nu}|\beta(y), p^{\nu}|\beta(x, y)$ for all $x \in L$, and $p^{\nu} \nmid \beta(r, y)$.

Proof. For the sake of simplicity we write ℓ for $\ell(\underline{L})$ and $\ell_p := p^{\nu_p(\ell)}$. By the definition of level, we know that the denominator of $(\ell/\ell_p)\beta(r)$ is a ppower (including one). The assumption $p|\omega_L(r)$ implies that the order of the element $(\ell/\ell_p)r$ is a p-power more than one thus for each $y \in L$, the possible denominator of $\beta((\ell/\ell_p)r, y)$ is also a power of the prime p.

If $(\ell/\ell_p)\beta(r) \notin \mathbb{Z}$, then we let $y = 2p^{\nu}(\ell/\ell_p)r$. Obviously $p^{\nu}|\beta(x,y)$ for all $x \in L$. Since $\nu > \nu_p(2\ell_p)$, $p^{\nu}/\ell_p \in \mathbb{Z}$ thus $y = (p^{\nu}/\ell_p)\ell_r \in L$. We have

$$
\beta(y) = \frac{\beta(p^{\nu}(\ell/\ell_p)r, p^{\nu}(\ell/\ell_p)r)}{2} = p^{\nu} \cdot (p^{\nu}/\ell_p) \cdot (\ell/\ell_p)\ell \beta(r) \in p^{\nu}\mathbb{Z}.
$$

Also $(\ell/\ell_p)\beta(r) \notin \mathbb{Z}$ means that the p-valuation of $(\ell/\ell_p)\beta(r)$ is negative thus $\beta(r, y) = p^{\nu}(\ell/\ell_p)\beta(r) \notin p^{\nu}\mathbb{Z}$. By the above discussion, the element $y \in L$ exists as the lemma claimed.

If $(\ell/\ell_p)\beta(r) \in \mathbb{Z}$, then the pair $(L\langle (\ell/\ell_p)r \rangle, \beta)$ is also an even lattice. Here $L\langle(\ell/\ell_p)r\rangle$ is the Z-module, which is generated by L and $(\ell/\ell_p)r$. Note that the element $(\ell/\ell_p)r$ is not in L. We have

$$
|L^{\sharp}:L\langle (\ell/\ell_p)r\rangle^{\sharp}|=|L\langle (\ell/\ell_p)r\rangle:L|>1,
$$

which implies that there exists an element y' in L^{\sharp} such that $\beta((\ell/\ell_p)r, y') \notin \mathbb{Z}$ thus the *p*-adic valuation is negative. Now one can check that $y = p^{\nu}y'$ as the lemma stated. \Box

For proving (2i) of Theorem [1.1](#page-1-0) we need:

Lemma 2.3. Let $\underline{L} = (L, \beta)$ be an even lattice. For each prime power p^{ν} , the following

$$
\sum_{x \in L/p^{\nu}L} e_{p^{\nu}} \left((d+4p)\beta(x) \right) = \sum_{x \in L/p^{\nu}L} e_{p^{\nu}} \left(d\beta(x) \right)
$$

holds for any integer d coprime to p.

Proof. For each integer d coprime to p, one can find an integer t coprime to p satisfying $dt^2 \equiv d + 4p \mod p^{\nu}$. The application $x \to tx$ is an automorphism of $L/p^{\nu}L$ thus

$$
\sum_{x \in L/p^{\nu}L} e_{p^{\nu}} (d\beta(x)) = \sum_{x \in L/p^{\nu}L} e_{p^{\nu}} (d\beta(tx))
$$

=
$$
\sum_{x \in L/p^{\nu}L} e_{p^{\nu}} (dt^2 \beta(x)) = \sum_{x \in L/p^{\nu}L} e_{p^{\nu}} ((d+4p)\beta(x)).
$$

This proves the lemma. \Box

To prove (2ii) of Theorem [1.1](#page-1-0) we shall evaluate $\sum_{x \in L/p^{\nu}L} e_{p^{\nu}}(d\beta(x))$ for $\nu > \nu_p(2\ell(L))$. We briefly introduce the terminology of Jordan decomposition over the ring of p-adic integers. Define the following lattices over the ring of p-adic integers:

- (i) $\underline{A}_{p^j}^{\varepsilon} := (\mathbb{Z}_p, p^j \varepsilon x^2), p$ is odd prime, $gcd(p, \varepsilon) = 1;$
- (ii) $\underline{A}_{2^j}^{\varepsilon} := (\mathbb{Z}_2, 2^{j+1} \varepsilon x^2), \text{gcd}(2, \varepsilon) = 1;$

(iii) $\underline{B}_{2^j} := (\mathbb{Z}_2 \times \mathbb{Z}_2, 2^j (x^2 + xy + y^2));$

(iv) $\underline{C}_{2^j} := (\mathbb{Z}_2 \times \mathbb{Z}_2, 2^j xy).$

For an even lattice $\underline{L} = (L, \beta)$ set $\underline{L}_p := (L \otimes \mathbb{Z}_p, \beta)$ and we simply write $L \otimes \mathbb{Z}_p$ as L_p . We say that two \mathbb{Z}_p -lattices (L_p, β) and (L'_p, β') are isomorphic over \mathbb{Z}_p if there is an isomorphism ψ from L_p to L'_p such that for each $x \in L$, $\beta(x) =$ $\beta(\psi(x))$ holds. The Jordan decomposition over the ring of p-adic integers shows that lattices over \mathbb{Z}_p can be isomorphic to direct sums of the above \mathbb{Z}_p -lattices, which is the following proposition:

Proposition 2.4 ([\[4,](#page-8-2) Chapter 15, Theorem 2]). Let $\underline{L} = (L, \beta)$ be an even lattice.

(1) For any odd prime p, L_p is isomorphic to the form

(2.4)
$$
\underline{L}_p \approx \bigoplus_{j=0}^{l_p} \bigoplus_{i=0}^{r_{p,j}} \underline{A}_{p^j}^{\varepsilon_{p^j,i}};
$$

(2) The lattice \underline{L} is isomorphic to the following form over \mathbb{Z}_2 :

$$
(2.5) \quad \underline{L}_2 \approx \Big(\bigoplus_{j=1}^{l_2} \bigoplus_{i=0}^{r_{2,j}} \underline{A}_{2^j}^{\varepsilon_{2^j,i}}\Big) \oplus \Big(\bigoplus_{j=1}^{m_2} \Big(\underline{B}_{2^j} \oplus \cdots \oplus \underline{B}_{2^j} \oplus \underline{C}_{2^j} \oplus \cdots \oplus \underline{C}_{2^j}\Big)\Big).
$$

Remark 2.5. We admit that $r_{p,j}$, $r_{2,j}$, s_j , t_j are zero. If we let l_p (resp. l_2 , m_2) be the smallest integer such that $r_{p,j}$ (resp. $r_{2,j}$, $s_j + t_j$) = 0 when $j > l_p$ (resp. l_2, m_2 , then $\nu_p(\ell(\underline{L})) = l_p$ for any odd prime and $\nu_2(\ell(\underline{L})) = \max\{l_2 + 2, m_2\}.$

We also need some results for classical Gauss sums.

Lemma 2.6 ([\[2,](#page-8-3) Chapter 1]). Let p be an odd prime and d an integer with $p \nmid d$. For a positive integer ν we have

$$
\sum_{x \bmod p^{\nu}} e_{p^{\nu}}(dx^2) = \epsilon(p^{\nu}) p^{\frac{\nu}{2}} \left(\frac{d}{p^{\nu}} \right),
$$

where for an odd integer m, $\epsilon(m) := \sqrt{\frac{-1}{m}}$ m . 912 R. XIONG

Lemma 2.7 ([\[2,](#page-8-3) Chapter 1]). For each positive integer ν and odd integer d, one has

$$
\sum_{x \bmod 2^{\nu}} e_{2^{\nu}}(dx^2) = \begin{cases} 0 & \text{if } \nu = 1; \\ 2^{\frac{\nu+1}{2}} \left(\frac{d}{2^{\nu+1}}\right) e_8(d) & \text{if } \nu > 1. \end{cases}
$$

Lemma 2.8 ([\[1,](#page-7-0) Lemma 2.1.9, 2.1.10]). For each positive integer ν and odd integer d, the following identities hold:

$$
\sum_{x,y \bmod 2^{\nu}} e_{2^{\nu}}(dx y) = 2^{\nu} \left(\frac{-1}{2^{\nu}} \right), \quad \sum_{x,y \bmod 2^{\nu}} e_{2^{\nu}}(d(x^2 + xy + y^2)) = 2^{\nu} \left(\frac{3}{2^{\nu}} \right).
$$

Lemma 2.9. Let $\underline{L} = (L, \beta)$ be an even lattice. Write

$$
\gamma_{\underline{L}}(d,c) := \sum_{x \in L/cL} e_c(d\beta(x))
$$

for positive integer c and integer d. For any prime p and d coprime to p, the *identity* $\gamma_{\underline{L}}(d, p^{\nu+2}) = p^{\text{rk}(\underline{L})} \gamma_{\underline{L}}(d, p^{\nu})$ *holds when* $\nu > \nu_p(2\ell(\underline{L}))$.

Proof. Let $\underline{L} = (L, \beta)$ be an even lattice whose Jordan decomposition over \mathbb{Z}_p as stated in Proposition [2.4](#page-4-0) for each prime p. For an odd prime power $p^{\nu} > p^{\nu_p(2\ell_{\underline{L}})}$ and an integer d coprime to p, applying Lemma [2.6](#page-4-1) we have

(2.6)
$$
\gamma_{\underline{L}}(d, p^{\nu}) = \sum_{x \in L/p^{\nu}L} e_{p^{\nu}}(d\beta(x))
$$

$$
= \prod_{j=0}^{\nu_p(\ell(\underline{L}))} \prod_{i=0}^{r_{p,j}} \left(\sum_{x \bmod p^{\nu}} e_{p^{\nu}}(dp^j \varepsilon_{p^j,i} x^2) \right)
$$

$$
= \prod_{j=0}^{\nu_p(\ell(\underline{L}))} \prod_{i=0}^{r_{p,j}} \left(p^j \sum_{x \bmod p^{\nu}} e_{p^{\nu-j}}(d\varepsilon_{p^j,i} x^2) \right)
$$

$$
= \prod_{j=0}^{\nu_p(\ell(\underline{L}))} p^{\frac{r_{p,j}(\nu+j)}{2}} \epsilon(p^{\nu-j})^{r_{p,j}} \prod_{i=0}^{r_{p,j}} \left(\frac{\varepsilon_{p^j,i} d}{p^{\nu+j}} \right).
$$

For $\nu > \nu_2(2\ell_{\underline{L}})$ and an odd integer d, one has

$$
\gamma_{\underline{L}}(d,2^{\nu}) = \sum_{x \in L/2^{\nu}L} e_{2^{\nu}}(d\beta(x))
$$

=
$$
\prod_{j=0}^{b_2} \left(\sum_{x,y \bmod 2^{\nu}} e_{2^{\nu}}(d2^j(x^2 + xy + y^2)) \right)^{s_j}
$$

$$
\times \prod_{j=0}^{c_2} \left(\sum_{x,y \bmod 2^{\nu}} e_{2^{\nu}}(d2^jxy) \right)^{t_j} \prod_{j=0}^{a_2} \prod_{i=1}^{r_{2,j}} \left(\sum_{x \bmod 2^{\nu}} e_{2^{\nu}}(d2^j\varepsilon_{2^j,i}x^2) \right).
$$

By applying Lemmas [2.7](#page-5-0) and [2.8,](#page-5-1) we get

$$
(2.7) \quad \gamma_{\underline{L}}(d, 2^{\nu})
$$
\n
$$
= \prod_{j=0}^{b_2} \left(2^{\nu+j} \left(\frac{3}{2^{\nu+j}} \right) \right)^{s_j} \prod_{j=0}^{c_2} \left(2^{\nu+j} \left(\frac{-1}{2^{\nu+j}} \right) \right)^{t_j}
$$
\n
$$
\times \prod_{j=0}^{a_2} \left(2^{\frac{\nu+j+1}{2}} \left(\frac{d}{2^{\nu+j+1}} \right) \right)^{r_{2,j}} \prod_{j=0}^{a_2} \prod_{i=0}^{r_{2,j}} \left(\frac{\varepsilon_{2^j,i}}{2^{\nu+j+1}} \right) e_8 \left(\sum_{j=0}^{a_2} \sum_{i=0}^{r_{2,j}} \varepsilon_{2^j,i} d \right)
$$
\n
$$
= 2^{\frac{\nu \sum (s_j + t_j + r_{2,j})}{2}} \prod_{j=0}^{b_2} \left(2^j \left(\frac{3}{2^j} \right) \right)^{s_j} \prod_{j=0}^{c_2} \left(2^{\nu+j} \left(\frac{-1}{2^j} \right) \right)^{t_j}
$$
\n
$$
\times \prod_{j=0}^{a_2} \left(2^{\frac{j+1}{2}} \left(\frac{d}{2^{j+1}} \right) \right)^{r_{2,j}} \prod_{j=0}^{a_2} \prod_{i=0}^{r_{2,j}} \left(\frac{\varepsilon_{2^j,i}}{2^{j+1}} \right).
$$

Now by the relation

$$
\sum_{j} r_{p,j} = \sum_{j} (s_j + t_j + r_{2,j}) = \text{rk}(\underline{L}),
$$

one immediately sees the lemma is true after observing last identities of [\(2.6\)](#page-5-2) and (2.7) .

Proof of Theorem [1.1.](#page-1-0) (1) We use the expression for $g_L(n, r; p^{\nu})$ as in [\(2.2\)](#page-2-0). It is sufficient to show that for any prime $p|\omega_L(r)$ and integer ν more than $\nu_p(2\ell(\underline{L}))$, the inner sum of [\(2.2\)](#page-2-0) vanishes. Recall that the inner sum of (2.2) is

(2.8)
$$
\sum_{x \in L/p^{\nu}L} e_{p^{\nu}} \left(d\left(\beta(x) + \beta(r,x)\right)\right).
$$

From Lemma [2.2](#page-3-0) we know that for each integer $\nu > \nu_p(2\ell(\underline{L}))$, there exists an element y of L such that $p^{\nu}|\beta(y), p^{\nu}|\beta(x, y)$ for all $x \in L$, and $p^{\nu} \nmid \beta(r, y)$. Replacing x by $x + y$ we have

$$
\sum_{x \in L/p^{\nu}L} e_{p^{\nu}} (d(\beta(x) + \beta(r, x)))
$$
\n
$$
= \sum_{x \in L/p^{\nu}L} e_{p^{\nu}} (d(\beta(x + y) + \beta(r, x + y)))
$$
\n
$$
= e_{p^{\nu}}(\beta(r, y)) \sum_{x \in L/p^{\nu}L} e_{p^{\nu}} (d(\beta(x) + \beta(r, x))),
$$

which yields that [\(2.8\)](#page-6-1) equals zero. This proves (1).

(2) We use the expression for $g_{\mathcal{L},n,r}(p^{\nu})$ in [\(2.3\)](#page-2-1). For (2i), substituting d by $d + 4p$ in (2.3) we have

914 R. XIONG

$$
p^{\nu} g_{\underline{L}}(n, r; p^{\nu})
$$
\n
$$
= \sum_{\substack{d \bmod{p^{\nu}} \\ \gcd(d, p^{\nu})=1}} e_{p^{\nu}} \left(-(d+4p)\omega_{\underline{L}}(r)^{2}n \right) \sum_{x \in L/p^{\nu}L} e_{p^{\nu}}((d+4p)\beta(x))
$$
\n
$$
= e_{p^{\nu}} \left(-4p\omega_{\underline{L}}(r)^{2}n \right) \sum_{\substack{d \bmod{p^{\nu}} \\ \gcd(d, p^{\nu})=1}} e_{p^{\nu}}(-d\omega_{\underline{L}}(r)^{2}n) \sum_{x \in L/p^{\nu}L} e_{p^{\nu}}((d+4p)\beta(x))
$$
\n
$$
= e_{p^{\nu-1}} \left(-4\omega_{\underline{L}}(r)^{2}n \right) \sum_{\substack{d \bmod{p^{\nu}} \\ \gcd(d, p^{\nu})=1}} e_{p^{\nu}}(-d\omega_{\underline{L}}(r)^{2}n) \sum_{x \in L/p^{\nu}L} e_{p^{\nu}}(d\beta(x))
$$
\n
$$
= e_{p^{\nu-1}} \left(-4\omega_{\underline{L}}(r)^{2}n \right) p^{\nu} g_{\underline{L}}(n, r; p^{\nu}),
$$

where for the third identity we used Lemma [2.3.](#page-3-1) The number $e_{p^{\nu-1}}(-4\omega_{\underline{L}}(r)^2n)$ fails to be an integer when $\nu > \nu_p(8p\omega_{\underline{L}}(r)^2n)$, which yields that $g_{\underline{L}}(n,r;p^{\nu}) =$ 0. This proves (2i).

Finally we consider (2ii). We have that

$$
g_{\underline{L}}(0,0;p^{\nu}) = \frac{1}{p^{\nu}} \sum_{\substack{d \bmod p^{\nu} \\ \gcd(d,p)=1}} \sum_{x \in L/p^{\nu}L} e_{p^{\nu}}(d\beta(x)).
$$

Write $\gamma_{\underline{L}}(d, p^{\nu}) = \sum_{x \in L/p^{\nu}L} e_{p^{\nu}}(d\beta(x))$. By Lemma [2.3,](#page-3-1) $\gamma_{\underline{L}}(d, p^{\nu}) = \gamma_{\underline{L}}(d +$ $(4p, p^{\nu})$ for each integer d with $gcd(d, p) = 1$. Therefore, for each integer $\nu >$ $\nu_p(2\ell(\underline{L}))$, we have

$$
g_{\underline{L}}(0,0;p^{\nu+2}) = \frac{1}{p^{\nu+2}} \sum_{\substack{d \bmod p^{\nu+2} \\ \gcd(d,p)=1}} \gamma_{\underline{L}}(d,p^{\nu+2}) = \frac{1}{p^{\nu}} \sum_{\substack{d \bmod p^{\nu} \\ \gcd(d,p)=1}} \gamma_{\underline{L}}(d,p^{\nu+2}).
$$

According to Lemma [2.9,](#page-5-3) $\gamma_L(d, p^{\nu+2}) = p^{\text{rk}(\underline{L})} \gamma_L(d, p^{\nu})$ holds when $\nu > \nu_p(2\ell(\underline{L}))$. Finally we find that

$$
g_{\underline{L}}(0,0;p^{\nu+2}) = p^{\text{rk}(\underline{L})} \times \frac{1}{p^{\nu}} \sum_{\substack{d \bmod p^{\nu} \\ \gcd(d,p)=1}} \gamma_{\underline{L}}(d,p^{\nu}) = p^{\text{rk}(\underline{L})} g_{\underline{L}}(0,0;p^{\nu}).
$$

Now we complete the proof of Theorem [1.1.](#page-1-0) \Box

Acknowledgements. The author would like to thank the referees for their valuable comments on this work. Also the author is greatly indebted to Nils-Peter Skoruppa, for teaching to the author basic knowledge of lattices, finite quadratic modules and related topics during 2015-2019.

References

[1] A. Ajouz, Hecke operators on Jacobi forms of lattice index and the relation to elliptic modular forms, Ph.D. thesis, University of Siegen, 2015.

- [2] B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi Sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998.
- [3] J. H. Bruinier and M. Kuss, *Eisenstein series attached to lattices and modular forms on* orthogonal groups, Manuscripta Math. 106 (2001), no. 4, 443–459. [https://doi.org/10.](https://doi.org/10.1007/s229-001-8027-1) [1007/s229-001-8027-1](https://doi.org/10.1007/s229-001-8027-1)
- [4] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, third edition, Grundlehren Math. Wiss. 290, Springer, New York, 1999. [https://doi.org/10.1007/](https://doi.org/10.1007/978-1-4757-6568-7) [978-1-4757-6568-7](https://doi.org/10.1007/978-1-4757-6568-7)
- $[5]$ C. L. Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2) 36 (1935), no. 3, 527–606. <https://doi.org/10.2307/1968644>

Ran Xiong SCHOOL OF MATHEMATICS AND STATISTICS Weinan Normal University Weinan, 714099, Shanxi, P. R. China Email address: ranxiong2012@163.com