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A NOTE ON REPRESENTATION NUMBERS OF
QUADRATIC FORMS MODULO PRIME POWERS

RAN XIONG

ABSTRACT. Let f be an integral quadratic form in k variables, F' the
Gram matrix corresponding to a Z-basis of Z*. For r € F~1ZF a
rational number n with f(r) = nmod Z and a positive integer c, set
N¢(n,ric) = t{x € Z¥/cZF : f(z +r) = nmod c}. Siegel showed that
for each prime p, there is a number w depending on r and n such that
Ng¢(n,r;p?+1t) = p* =1 Ny (n, r; p¥) holds for every integer v > w and gave
a rough estimation on the upper bound for such w. In this short note,
we give a more explicit estimation on this bound than Siegel’s.

1. Introduction and statement

Let f be an integral quadratic form in k variables, F' the Gram matrix
corresponding to a Z-basis of Z*. For r € F~'Z*, a rational number n with
f(r) = n mod Z and a positive integer c, set

(1.1) N¢(n,ric) := t{x € Z¥/cZ" : f(z +r) =n mod c}.

In his seminal work for representation numbers of quadratic forms, Siegel [5]
in fact proved that for a nonzero n,

(1.2) Ng(n,r;p'tt) = pklef(n, r;p”) when v > VP(wanz)

(see [5, Hilfssatz 13]. For a clearer form one can also refer to [3, Lemma 5]).
Here w, is the smallest positive integer such that w,r € Z*. In this paper,
by computing N¢(n,r;p*T!) with the method of Gauss sums we improve the
Siegel’s result. Roughly saying we find that

Ni(n,r;p"™) = p* I Ny(n,r;p”)  when v > 1,(2w?n).

We explain the above statement more explicitly by the language of lattice.
Recall that an even lattice L = (L, 3) is a free Z-module L of finite rank rk(L),
equipped with a non-degenerate symmetric Z-valued bilinear form g such that
B(z) := B(x,xz)/2 € Z for all z € L. Note that 5 : L — Z is a quadratic form,
i.e., Blax) = a?B(x) for alla € Z and z € L. In the following by writing an even
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lattice (L, B), 8 refers to the quadratic form which is induced by the symmetric
Z-valued bilinear form. For example, (Z, x?) is the lattice (Z, (z,y) — 2xy).
The dual of lattice L is

Lu:{y€L®ZQ:B(az,y)€Z for all x € L}.

It is well known that |L*/L| equals to | det(L)|, where det(L) is the determinant
of the Gram matrix corresponding to any Z-basis of L thus L!/L is a finite
abelian group. Define A(L), ¢(L), the discriminant of L and the level of L as
follows:

A(L) = (—1)L¥J det(L) if rk(L) is even;
(—D)L* 2 det(L) if tk(L) is odd,

(L) :=min{f € N: LB(r) € Z for all r € L*}.
For an element r € L¥ let wy(r) be the order of r in L!/L. Obviously
((L)|A(L). For any element x € L, we have that
B(L)r,x) = L(L)B(r,x) = L(L) (B(r) + B(y) — B(r +y)) € Z,

which implies that ¢(L)r € L thus wy,(r)|¢(L).

Under the same notations as the above, we rewrite (1.1) as
(1.3) Np(n,r;e) :=t#{x € L/cL : B(x +r) = n mod c}.
We put

gr(n,r;c) == Zﬂ(d)drk@)*lNL(n,r; c/d).
d|c
Then the Siegel’s result is reformulated as
(1.4) gr(n,m;p") =0 when v > v,(2pw(r)*n?).

Strictly speaking we will prove the following theorem:

Theorem 1.1. Let L = (L, 3) be an even lattice, r an element in the dual of
L and n a rational number with 5(r) = n mod Z.

(1) For a prime p | wi(r), we have gp(n,r;p”) =0 when v > vp(20(L)).
(2) Let p be a prime with p{w(r).

(2i) If n # 0 then gp(n,r;p”) = 0 when v > v,(8pwg(r)?n).

(2ii) We have

gL(O,r;p””) = prk(L)gL(O,r;p”) when v > v, (2¢(L)).

We now fix basic notations throughout this paper. For a prime p, Z, stands
for the ring of p-adic integers. For a rational number a, v,(a) is the p-adic
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valuation of the rational number a. The bracket (—) is the Kronecker symbol,

i.e., for an odd prime p, (5) is the usual Legendre symbol, for p = 2,

0 if a = 0 mod 2;
(7> =<1 if a = 1 mod 8;
—1 if a =+3 mod 8.

2mit

For an integer ¢ and a complex number ¢, we write e.(t) :=e"c .

2. Proof of Theorem 1.1

Since g1, is multiplicative in the variable ¢, we just need to study gr(n,r; p")
for prime powers p¥. For studying we express gr(n,r;p”) in terms of Gauss
sums as follows:

1
(2.1) gnrip)=— Y > ep(dBa+r)—n)).
p d mod p¥ z€L/p¥L
ged(d,p)=1

Firstly we have

Lemma 2.1. Under the same notations as before, we have the following:
(1) If p | wir(r), then

1
(22)  grn,rp)=— Y, ewldn) Y ep (d(B(x)+B(rx)),
p d mod p” zeL/pYL
ged(d,p)=1

where n,. = B(r) — n.
(2) If ptwi(r), then

(2.3) gL(nJ;p”):;% Z epr (—dwr,(r)?n) Z epr (dB(x)).

d mod p¥ z€L/p¥L
ged(d,p)=1

Proof. The assertion (1) is obvious. For (2), since p{ wr (), one has
Np(n,r;p”) =t8{x € L/p"L : B(xz +r) = n mod p"}
=t{z € L/p"L : wr(r)*B(z +r) = wr(r)*n mod p”}
= t{w € L/p"L: B(wi(r)z + wr(r)r)) = wr(r)*n mod p*}
= t{w € L/p"L: f(w) = wr(r)*n mod p*}
= Ny (wr(r)*n, 0;p"),

where for the fourth identity, we replace wy (r)z + wp(r)r by z. Now one can
immediately see (2) is true. O

For proving the main theorem, we need some auxiliary lemmas. The follow-
ing lemma is a key to prove (1) of Theorem 1.1.
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Lemma 2.2. Let L = (L, ) be an even lattice, r an element in the dual of L
and p a prime with p | wg(r). Then for each integer v > v,(2¢(L)), there exists
an element y of L such that p¥|B(y), p”|B(x,y) for all x € L, and p” 1 B(r,y).

Proof. For the sake of simplicity we write ¢ for ¢(L) and ¢, := pr). By
the definition of level, we know that the denominator of (¢/¢,)3(r) is a p-
power (including one). The assumption plwg (r) implies that the order of the
element (¢/¢,)r is a p-power more than one thus for each y € L, the possible
denominator of 3((¢/¢,)r,y) is also a power of the prime p.

If (¢/¢,)B(r) ¢ Z, then we let y = 2p”(¢/¢,)r. Obviously p¥|5(z,y) for all
x € L. Since v > v,(24,,), p*/l, € Z thus y = (p*/€,)lr € L. We have

() = POLIP D) _ o yg,) - (08, 080) € 92,

Also (¢/¢,)8(r) ¢ Z means that the p-valuation of (£/¢,)5(r) is negative thus
B(r,y) = p”(£/£,)5(r) ¢ p”Z. By the above discussion, the element y € L
exists as the lemma claimed.

If (¢/4,)B(r) € Z, then the pair (L{(¢/¢p)r), ) is also an even lattice. Here
L{(¢/¢,)r) is the Z-module, which is generated by L and (¢/¢,)r. Note that
the element (¢/¢,)r is not in L. We have

\LE 2 LU(E/0,)r)E| = |LU(E/6,)r) L] > 1,

which implies that there exists an element 3’ in L* such that 3((¢/£,)r,y') ¢ Z
thus the p-adic valuation is negative. Now one can check that y = p¥y’ as the
lemma stated. O

For proving (2i) of Theorem 1.1 we need:

Lemma 2.3. Let L = (L, ) be an even lattice. For each prime power p¥, the
following

S e (d+4p)B) = Y ep (dB(x))

xz€L/p¥L x€L/pYL

holds for any integer d coprime to p.

Proof. For each integer d coprime to p, one can find an integer ¢ coprime to p
satisfying dt? = d + 4p mod p”. The application z — tx is an automorphism of
L/p”L thus

Yo ew(dBl@)= Y ey (dB(tr))

z€L/p¥L z€L/p¥L
= Y e (dPBx) = D ep ((d+4p)B(x)).
z€L/p”L z€L/p¥L

This proves the lemma. O
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To prove (2ii) of Theorem 1.1 we shall evaluate }_ ;.1 €p (dB(z)) for
v > v,(2¢(L)). We briefly introduce the terminology of Jordan decomposition
over the ring of p-adic integers. Define the following lattices over the ring of
p-adic integerS'
(i) A (Zp,pjsx2), p is odd prime, ged(p,e) = 1;
(11) AZJ (Zo, 27t ea?), ged(2,€) = 1;
(iil) By 1= (Z2 x Zn,2 (* + 2y +47%));
(1V) QQJ = (Zg X Zgﬂjxy).
For an even lattice L = (L, ) set L, := (L ®Zy, 3) and we simply write L ®Z,
as L,. We say that two Z-lattices (L, 8) and (L, 3’) are isomorphic over Z,
if there is an isomorphism % from L, to L; such that for each z € L, B(z) =
B((x)) holds. The Jordan decomposition over the ring of p-adic integers shows
that lattices over Z, can be isomorphic to direct sums of the above Z,-lattices,
which is the following proposition:
Proposition 2.4 ([4, Chapter 15, Theorem 2|). Let L = (L,[) be an even
lattice.
(1) For any odd prime p, L, is isomorphic to the form

p Tpj

l
~ Epd i,
(2.4) L~ @ Azﬂ '
j=0

=0 =0

(2) The lattice L is isomorphic to the following form over Zs:

(2.5) L, = (éaé/l;?“) & (éné (Bys @+ @By Cy; &+ @& Cy, ))
j=1i=0 j=1

Sj tj

Remark 2.5. We admit that 7, ;, r2 ;, s;, t; are zero. If we let I, (resp. la, m2)
be the smallest integer such that ry, ;(resp. r2 ;, s; +¢;) = 0 when j > [,(resp.
la, mg2), then v,(¢(L)) = I, for any odd prime and v5(4(L)) = max{ls +2,ma}.

We also need some results for classical Gauss sums.

Lemma 2.6 ([2, Chapter 1]). Let p be an odd prime and d an integer with
ptd. For a positive integer v we have

ST epe(da?) = e(p)p¥ (d) ,

x mod p¥

-1
where for an odd integer m, e(m) := ()
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Lemma 2.7 ([2, Chapter 1]). For each positive integer v and odd integer d,
one has
ifv=1;

0
2y _
D, ew(de®) = 9% <d >6s(d) ifv>1.

x mod 2V 21/+1

Lemma 2.8 ([1, Lemma 2.1.9, 2.1.10]). For each positive integer v and odd
integer d, the following identities hold:

> adm =2 (3] X et =2(5).

z,y mod 2% z,y mod 2¥

Lemma 2.9. Let L = (L, ) be an even lattice. Write
vi(d,c) == Z ec.(dp(z))
z€L/cL
for positive integer ¢ and integer d. For any prime p and d coprime to p, the

identity vz (d,p* %) = p*Erp(d,p¥) holds when v > v,(2¢(L)).

Proof. Let L = (L,B) be an even lattice whose Jordan decomposition over
Z, as stated in Proposition 2.4 for each prime p. For an odd prime power
p¥ > p*»(2L) and an integer d coprime to p, applying Lemma 2.6 we have

(2.6) wdp)= Y ep(df(a)
x€L/p¥L
vp(U(L)) Tp.;

ST S e
j=0 =0

x mod p¥
vp(€(L)) Tp,j
j 2
= H H p’ E epv—i(deps ;%)
= z mod p¥

vp(U(L) i e
= H P )pJH pv—i-j .

=0

For v > 15(2¢) and an odd integer d, one has
1Ld2) = Y ex(db())

Sj

“TI{ X (@@ +ay+y?)

X H Z g (d27 zy) H l_i ( Z eov (A2 e4; T 2)) .

7=0 \ z,y mod 2% 7j=0i=1 \z mod 2%
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By applying Lemmas 2.7 and 2.8, we get
(2.7) %(d 2")

L1 (65) T (7))

asz T2,5 a2 T2, az T2,j
v+l d €9i 4
TL( (5)) T () e [ XX
j=0 j=01i=0 §=0 i=0
b2 s; C2 t;
v3(sjttitra 5) s 7 (=1 7
_g— 5= J [ 2 1 N
(2 (3) T (3))
Jj=0 Jj=0
a2 j a2 T2,
i+l d €27
T2 (55)) THI(G)-
7=0 7=01:=0

Now by the relation
eryj = Z sj+t; +re ;) =r1k(L),
J J

one immediately sees the lemma is true after observing last identities of (2.6)
and (2.7). O

Proof of Theorem 1.1. (1) We use the expression for gp(n,r;p¥) as in (2.2).
It is sufficient to show that for any prime plwy(r) and integer v more than
vp(2¢(L)), the inner sum of (2.2) vanishes. Recall that the inner sum of (2.2)
is

(2.8) Y e [d(Ba) +B(r,2))) -

z€L/pYL

From Lemma 2.2 we know that for each integer v > v,(2¢(L)), there exists
an element y of L such that p”|5(y), p¥|B8(x,y) for all x € L, and p” { B(r,y).
Replacing = by « + y we have

> e (d(B(z) + B(r,x)))

xeL/pYL

= Y e (d(B+y)+B(ra+y))
x€L/p¥L

=ep(B(ry) D> e (d(B(x)+B(rx)),

xz€eL/p¥L

which yields that (2.8) equals zero. This proves (1).
(2) We use the expression for gr, » »(p”) in (2.3). For (2i), substituting d by
d+ 4p in (2.3) we have
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P gr(n,r;p")

- Z ep (—(d + 4p)wr(r)*n) Z epr ((d + 4p)B(z))

d mod p” z€L/pYL
ged(d,p”)=1
=ep (<Apop(r)®n) Y ep(—dwr(r)®n) Y ey ((d+4p)B(x))
d mod p¥ z€L/pYL
ged(d,p”)=1
=epr (—Awr(r)®n) Y0 ep(—dwr(r)’n) Y e (dB(x))
d mod p¥ x€L/p¥L
ged(d,p”)=1

= ePV71 (_4WL(T)2,”’) pygé(na T, pl/>7

where for the third identity we used Lemma 2.3. The number e,,—1 (—4wp (r)?n)
fails to be an integer when v > v,(8pwy,(r)?n), which yields that gy (n,r;p") =
0. This proves (2i).

Finally we consider (2ii). We have that

1
g(0,0:p") = — > Y ep(dB(x)).
p d mod p¥ xz€L/p“L
ged(d,p)=1

Write yp(d,p") = Xy prr €pv (dB(2)). By Lemma 2.3, v,(d, p”) = y0(d +
4p,p¥) for each integer d with ged(d,p) = 1. Therefore, for each integer v >
vp(20(L)), we have

1 1
92(0,0;p"*?) = pr+2 Z YL(d, p'+?) = o~ Z YL(d, p'+?).

d mod p” T2 P d mod p”
ged(d,p)=1 ged(d,p)=1

According to Lemma 2.9, v, (d, p* 72) = p ¥y, (d, p¥) holds when v > v, (2(L)).
Finally we find that

v I 1 'z I v
g90(0,0;p" %) = p* B — Ny (d, p") = p*E gL (0,0:p").
p d mod p”
ged(d,p)=1

Now we complete the proof of Theorem 1.1. O
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