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A NOTE ON REPRESENTATION NUMBERS OF

QUADRATIC FORMS MODULO PRIME POWERS

Ran Xiong

Abstract. Let f be an integral quadratic form in k variables, F the

Gram matrix corresponding to a Z-basis of Zk. For r ∈ F−1Zk, a
rational number n with f(r) ≡ n mod Z and a positive integer c, set

Nf (n, r; c) := ♯{x ∈ Zk/cZk : f(x + r) ≡ n mod c}. Siegel showed that

for each prime p, there is a number w depending on r and n such that
Nf (n, r; p

ν+1) = pk−1Nf (n, r; p
ν) holds for every integer ν > w and gave

a rough estimation on the upper bound for such w. In this short note,
we give a more explicit estimation on this bound than Siegel’s.

1. Introduction and statement

Let f be an integral quadratic form in k variables, F the Gram matrix
corresponding to a Z-basis of Zk. For r ∈ F−1Zk, a rational number n with
f(r) ≡ n mod Z and a positive integer c, set

(1.1) Nf (n, r; c) := ♯{x ∈ Zk/cZk : f(x+ r) ≡ n mod c}.
In his seminal work for representation numbers of quadratic forms, Siegel [5]
in fact proved that for a nonzero n,

(1.2) Nf (n, r; p
ν+1) = pk−1Nf (n, r; p

ν) when ν > νp(2ω
2
rn

2)

(see [5, Hilfssatz 13]. For a clearer form one can also refer to [3, Lemma 5]).
Here ωr is the smallest positive integer such that ωrr ∈ Zk. In this paper,
by computing Nf (n, r; p

ν+1) with the method of Gauss sums we improve the
Siegel’s result. Roughly saying we find that

Nf (n, r; p
ν+1) = pk−1Nf (n, r; p

ν) when ν > νp(2ω
2
rn).

We explain the above statement more explicitly by the language of lattice.
Recall that an even lattice L = (L, β) is a free Z-module L of finite rank rk(L),
equipped with a non-degenerate symmetric Z-valued bilinear form β such that
β(x) := β(x, x)/2 ∈ Z for all x ∈ L. Note that β : L → Z is a quadratic form,
i.e., β(ax) = a2β(x) for all a ∈ Z and x ∈ L. In the following by writing an even
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lattice (L, β), β refers to the quadratic form which is induced by the symmetric
Z-valued bilinear form. For example, (Z, x2) is the lattice (Z, (x, y) → 2xy).

The dual of lattice L is

L♯ = {y ∈ L⊗Z Q : β(x, y) ∈ Z for all x ∈ L}.

It is well known that |L♯/L| equals to |det(L)|, where det(L) is the determinant
of the Gram matrix corresponding to any Z-basis of L thus L♯/L is a finite
abelian group. Define ∆(L), ℓ(L), the discriminant of L and the level of L as
follows:

∆(L) :=

{
(−1)⌊

rk(L)
2 ⌋ det(L) if rk(L) is even;

(−1)⌊
rk(L)

2 ⌋2 det(L) if rk(L) is odd,

ℓ(L) := min{ℓ ∈ N : ℓβ(r) ∈ Z for all r ∈ L♯}.

For an element r ∈ L♯, let ωL(r) be the order of r in L♯/L. Obviously

ℓ(L)|∆(L). For any element x ∈ L♯, we have that

β(ℓ(L)r, x) = ℓ(L)β(r, x) = ℓ(L) (β(r) + β(y)− β(r + y)) ∈ Z,

which implies that ℓ(L)r ∈ L thus ωL(r)|ℓ(L).

Under the same notations as the above, we rewrite (1.1) as

(1.3) NL(n, r; c) := ♯{x ∈ L/cL : β(x+ r) ≡ n mod c}.

We put

gL(n, r; c) :=
∑
d|c

µ(d)drk(L)−1NL(n, r; c/d).

Then the Siegel’s result is reformulated as

(1.4) gL(n, r; p
ν) = 0 when ν > νp(2pωL(r)

2n2).

Strictly speaking we will prove the following theorem:

Theorem 1.1. Let L = (L, β) be an even lattice, r an element in the dual of
L and n a rational number with β(r) ≡ n mod Z.

(1) For a prime p | ωL(r), we have gL(n, r; p
ν) = 0 when ν > νp(2ℓ(L)).

(2) Let p be a prime with p ∤ ωL(r).
(2i) If n ̸= 0 then gL(n, r; p

ν) = 0 when ν > νp(8pωL(r)
2n).

(2ii) We have

gL(0, r; p
ν+2) = prk(L)gL(0, r; p

ν) when ν > νp(2ℓ(L)).

We now fix basic notations throughout this paper. For a prime p, Zp stands
for the ring of p-adic integers. For a rational number a, νp(a) is the p-adic
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valuation of the rational number a. The bracket
( ·
·
)
is the Kronecker symbol,

i.e., for an odd prime p,
(

·
p

)
is the usual Legendre symbol, for p = 2,

(a
2

)
:=


0 if a ≡ 0 mod 2;

1 if a ≡ ±1 mod 8;

−1 if a ≡ ±3 mod 8.

For an integer c and a complex number t, we write ec(t) := e
2πit
c .

2. Proof of Theorem 1.1

Since gL is multiplicative in the variable c, we just need to study gL(n, r; p
ν)

for prime powers pν . For studying we express gL(n, r; p
ν) in terms of Gauss

sums as follows:

(2.1) gL(n, r; p
ν) =

1

pν

∑
d mod pν

gcd(d,p)=1

∑
x∈L/pνL

epν (d(β(x+ r)− n)) .

Firstly we have

Lemma 2.1. Under the same notations as before, we have the following:

(1) If p | ωL(r), then

(2.2) gL(n, r; p
ν) =

1

pν

∑
d mod pν

gcd(d,p)=1

epν (dnr)
∑

x∈L/pνL

epν (d(β(x) + β(r, x))) ,

where nr = β(r)− n.
(2) If p ∤ ωL(r), then

(2.3) gL(n, r; p
ν) =

1

pν

∑
d mod pν

gcd(d,p)=1

epν (−dωL(r)
2n)

∑
x∈L/pνL

epν (dβ(x)).

Proof. The assertion (1) is obvious. For (2), since p ∤ ωL(r), one has

NL(n, r; p
ν) = ♯{x ∈ L/pνL : β(x+ r) ≡ n mod pν}

= ♯{x ∈ L/pνL : ωL(r)
2β(x+ r) ≡ ωL(r)

2n mod pν}
= ♯{x ∈ L/pνL : β(ωL(r)x+ ωL(r)r)) ≡ ωL(r)

2n mod pν}
= ♯{x ∈ L/pνL : β(x) ≡ ωL(r)

2n mod pν}
= NL(ωL(r)

2n, 0; pν),

where for the fourth identity, we replace ωL(r)x + ωL(r)r by x. Now one can
immediately see (2) is true. □

For proving the main theorem, we need some auxiliary lemmas. The follow-
ing lemma is a key to prove (1) of Theorem 1.1.
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Lemma 2.2. Let L = (L, β) be an even lattice, r an element in the dual of L
and p a prime with p | ωL(r). Then for each integer ν > νp(2ℓ(L)), there exists
an element y of L such that pν |β(y), pν |β(x, y) for all x ∈ L, and pν ∤ β(r, y).

Proof. For the sake of simplicity we write ℓ for ℓ(L) and ℓp := pνp(ℓ). By
the definition of level, we know that the denominator of (ℓ/ℓp)β(r) is a p-
power (including one). The assumption p|ωL(r) implies that the order of the
element (ℓ/ℓp)r is a p-power more than one thus for each y ∈ L, the possible
denominator of β((ℓ/ℓp)r, y) is also a power of the prime p.

If (ℓ/ℓp)β(r) /∈ Z, then we let y = 2pν(ℓ/ℓp)r. Obviously pν |β(x, y) for all
x ∈ L. Since ν > νp(2ℓp), p

ν/ℓp ∈ Z thus y = (pν/ℓp)ℓr ∈ L. We have

β(y) =
β(pν(ℓ/ℓp)r, p

ν(ℓ/ℓp)r)

2
= pν · (pν/ℓp) · (ℓ/ℓp)ℓβ(r) ∈ pνZ.

Also (ℓ/ℓp)β(r) /∈ Z means that the p-valuation of (ℓ/ℓp)β(r) is negative thus
β(r, y) = pν(ℓ/ℓp)β(r) /∈ pνZ. By the above discussion, the element y ∈ L
exists as the lemma claimed.

If (ℓ/ℓp)β(r) ∈ Z, then the pair (L⟨(ℓ/ℓp)r⟩, β) is also an even lattice. Here
L⟨(ℓ/ℓp)r⟩ is the Z-module, which is generated by L and (ℓ/ℓp)r. Note that
the element (ℓ/ℓp)r is not in L. We have

|L♯ : L⟨(ℓ/ℓp)r⟩♯| = |L⟨(ℓ/ℓp)r⟩ : L| > 1,

which implies that there exists an element y′ in L♯ such that β((ℓ/ℓp)r, y
′) /∈ Z

thus the p-adic valuation is negative. Now one can check that y = pνy′ as the
lemma stated. □

For proving (2i) of Theorem 1.1 we need:

Lemma 2.3. Let L = (L, β) be an even lattice. For each prime power pν , the
following ∑

x∈L/pνL

epν ((d+ 4p)β(x)) =
∑

x∈L/pνL

epν (dβ(x))

holds for any integer d coprime to p.

Proof. For each integer d coprime to p, one can find an integer t coprime to p
satisfying dt2 ≡ d+4p mod pν . The application x→ tx is an automorphism of
L/pνL thus ∑

x∈L/pνL

epν (dβ(x)) =
∑

x∈L/pνL

epν (dβ(tx))

=
∑

x∈L/pνL

epν

(
dt2β(x)

)
=

∑
x∈L/pνL

epν ((d+ 4p)β(x)) .

This proves the lemma. □
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To prove (2ii) of Theorem 1.1 we shall evaluate
∑

x∈L/pνL epν (dβ(x)) for

ν > νp(2ℓ(L)). We briefly introduce the terminology of Jordan decomposition
over the ring of p-adic integers. Define the following lattices over the ring of
p-adic integers:

(i) Aε
pj :=

(
Zp, p

jεx2
)
, p is odd prime, gcd(p, ε) = 1;

(ii) Aε
2j :=

(
Z2, 2

j+1εx2
)
, gcd(2, ε) = 1;

(iii) B2j :=
(
Z2 × Z2, 2

j
(
x2 + xy + y2

))
;

(iv) C2j :=
(
Z2 × Z2, 2

jxy
)
.

For an even lattice L = (L, β) set Lp := (L⊗Zp, β) and we simply write L⊗Zp

as Lp. We say that two Zp-lattices (Lp, β) and (L′
p, β

′) are isomorphic over Zp

if there is an isomorphism ψ from Lp to L′
p such that for each x ∈ L, β(x) =

β(ψ(x)) holds. The Jordan decomposition over the ring of p-adic integers shows
that lattices over Zp can be isomorphic to direct sums of the above Zp-lattices,
which is the following proposition:

Proposition 2.4 ([4, Chapter 15, Theorem 2]). Let L = (L, β) be an even
lattice.

(1) For any odd prime p, Lp is isomorphic to the form

(2.4) Lp ≈
lp⊕

j=0

rp,j⊕
i=0

A
εpj,i
pj ;

(2) The lattice L is isomorphic to the following form over Z2:

(2.5) L2 ≈
( l2⊕

j=1

r2,j⊕
i=0

A
ε2j ,i
2j

)
⊕
( m2⊕

j=1

(
B2j ⊕ · · · ⊕B2j︸ ︷︷ ︸

sj

⊕C2j ⊕ · · · ⊕ C2j︸ ︷︷ ︸
tj

))
.

Remark 2.5. We admit that rp,j , r2,j , sj , tj are zero. If we let lp(resp. l2, m2)
be the smallest integer such that rp,j(resp. r2,j , sj + tj) = 0 when j > lp(resp.
l2, m2), then νp(ℓ(L)) = lp for any odd prime and ν2(ℓ(L)) = max{l2 +2,m2}.

We also need some results for classical Gauss sums.

Lemma 2.6 ([2, Chapter 1]). Let p be an odd prime and d an integer with
p ∤ d. For a positive integer ν we have∑

x mod pν

epν (dx2) = ϵ(pν)p
ν
2

(
d

pν

)
,

where for an odd integer m, ϵ(m) :=

√(
−1

m

)
.
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Lemma 2.7 ([2, Chapter 1]). For each positive integer ν and odd integer d,
one has ∑

x mod 2ν

e2ν (dx
2) =

0 if ν = 1;

2
ν+1
2

(
d

2ν+1

)
e8(d) if ν > 1.

Lemma 2.8 ([1, Lemma 2.1.9, 2.1.10]). For each positive integer ν and odd
integer d, the following identities hold:∑
x,y mod 2ν

e2ν (dxy) = 2ν
(
−1

2ν

)
,

∑
x,y mod 2ν

e2ν (d(x
2 + xy + y2)) = 2ν

(
3

2ν

)
.

Lemma 2.9. Let L = (L, β) be an even lattice. Write

γL(d, c) :=
∑

x∈L/cL

ec(dβ(x))

for positive integer c and integer d. For any prime p and d coprime to p, the
identity γL(d, p

ν+2) = prk(L)γL(d, p
ν) holds when ν > νp(2ℓ(L)).

Proof. Let L = (L, β) be an even lattice whose Jordan decomposition over
Zp as stated in Proposition 2.4 for each prime p. For an odd prime power

pν > pνp(2ℓL) and an integer d coprime to p, applying Lemma 2.6 we have

γL(d, p
ν) =

∑
x∈L/pνL

epν (dβ(x))(2.6)

=

νp(ℓ(L))∏
j=0

rp,j∏
i=0

 ∑
x mod pν

epν (dpjεpj ,ix
2)


=

νp(ℓ(L))∏
j=0

rp,j∏
i=0

pj ∑
x mod pν

epν−j (dεpj ,ix
2)


=

νp(ℓ(L))∏
j=0

p
rp,j(ν+j)

2 ϵ(pν−j)rp,j
rp,j∏
i=0

(
εpj ,id

pν+j

)
.

For ν > ν2(2ℓL) and an odd integer d, one has

γL(d, 2
ν) =

∑
x∈L/2νL

e2ν (dβ(x))

=

b2∏
j=0

 ∑
x,y mod 2ν

e2ν (d2
j(x2 + xy + y2))

sj

×
c2∏
j=0

 ∑
x,y mod 2ν

e2ν (d2
jxy)

tj
a2∏
j=0

r2,j∏
i=1

( ∑
x mod 2ν

e2ν (d2
jε2j ,ix

2)

)
.
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By applying Lemmas 2.7 and 2.8, we get

γL(d, 2
ν)(2.7)

=

b2∏
j=0

(
2ν+j

(
3

2ν+j

))sj c2∏
j=0

(
2ν+j

(
−1

2ν+j

))tj

×
a2∏
j=0

(
2

ν+j+1
2

(
d

2ν+j+1

))r2,j a2∏
j=0

r2,j∏
i=0

( ε2j ,i
2ν+j+1

)
e8

 a2∑
j=0

r2,j∑
i=0

ε2j ,id


=2

ν
∑

(sj+tj+r2,j)

2

b2∏
j=0

(
2j
(

3

2j

))sj c2∏
j=0

(
2ν+j

(
−1

2j

))tj

×
a2∏
j=0

(
2

j+1
2

(
d

2j+1

))r2,j a2∏
j=0

r2,j∏
i=0

( ε2j ,i
2j+1

)
.

Now by the relation∑
j

rp,j =
∑
j

(sj + tj + r2,j) = rk(L),

one immediately sees the lemma is true after observing last identities of (2.6)
and (2.7). □

Proof of Theorem 1.1. (1) We use the expression for gL(n, r; p
ν) as in (2.2).

It is sufficient to show that for any prime p|ωL(r) and integer ν more than
νp(2ℓ(L)), the inner sum of (2.2) vanishes. Recall that the inner sum of (2.2)
is

(2.8)
∑

x∈L/pνL

epν (d (β(x) + β(r, x))) .

From Lemma 2.2 we know that for each integer ν > νp(2ℓ(L)), there exists
an element y of L such that pν |β(y), pν |β(x, y) for all x ∈ L, and pν ∤ β(r, y).
Replacing x by x+ y we have∑

x∈L/pνL

epν (d (β(x) + β(r, x)))

=
∑

x∈L/pνL

epν (d (β(x+ y) + β(r, x+ y)))

= epν (β(r, y))
∑

x∈L/pνL

epν (d (β(x) + β(r, x))) ,

which yields that (2.8) equals zero. This proves (1).
(2) We use the expression for gL,n,r(p

ν) in (2.3). For (2i), substituting d by
d+ 4p in (2.3) we have
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pνgL(n, r; p
ν)

=
∑

d mod pν

gcd(d,pν)=1

epν

(
−(d+ 4p)ωL(r)

2n
) ∑
x∈L/pνL

epν ((d+ 4p)β(x))

= epν

(
−4pωL(r)

2n
) ∑

d mod pν

gcd(d,pν)=1

epν (−dωL(r)
2n)

∑
x∈L/pνL

epν ((d+ 4p)β(x))

= epν−1

(
−4ωL(r)

2n
) ∑

d mod pν

gcd(d,pν)=1

epν (−dωL(r)
2n)

∑
x∈L/pνL

epν (dβ(x))

= epν−1

(
−4ωL(r)

2n
)
pνgL(n, r; p

ν),

where for the third identity we used Lemma 2.3. The number epν−1

(
−4ωL(r)

2n
)

fails to be an integer when ν > νp(8pωL(r)
2n), which yields that gL(n, r; p

ν) =
0. This proves (2i).

Finally we consider (2ii). We have that

gL(0, 0; p
ν) =

1

pν

∑
d mod pν

gcd(d,p)=1

∑
x∈L/pνL

epν (dβ(x)).

Write γL(d, p
ν) =

∑
x∈L/pνL epν (dβ(x)). By Lemma 2.3, γL(d, p

ν) = γL(d +

4p, pν) for each integer d with gcd(d, p) = 1. Therefore, for each integer ν >
νp(2ℓ(L)), we have

gL(0, 0; p
ν+2) =

1

pν+2

∑
d mod pν+2

gcd(d,p)=1

γL(d, p
ν+2) =

1

pν

∑
d mod pν

gcd(d,p)=1

γL(d, p
ν+2).

According to Lemma 2.9, γL(d, p
ν+2) = prk(L)γL(d, p

ν) holds when ν > νp(2ℓ(L)).

Finally we find that

gL(0, 0; p
ν+2) = prk(L) × 1

pν

∑
d mod pν

gcd(d,p)=1

γL(d, p
ν) = prk(L)gL(0, 0; p

ν).

Now we complete the proof of Theorem 1.1. □
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