Commun. Korean Math. Soc. **39** (2024), No. 3, pp. 775–784 https://doi.org/10.4134/CKMS.c230199 pISSN: 1225-1763 / eISSN: 2234-3024

SUPER AND STRONG $\gamma \mathcal{H}$ -COMPACTNESS IN HEREDITARY *m*-SPACES

Ahmad Al-Omari and Takashi Noiri

ABSTRACT. Let (X, m, \mathcal{H}) be a hereditary *m*-space and $\gamma : m \to P(X)$ be an operation on *m*. A subset *A* of *X* is said to be $\gamma \mathcal{H}$ -compact relative to *X* [3] if for every cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *A* by *m*-open sets of *X*, there exists a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$. In this paper, we define and investigate two kinds of strong forms of $\gamma \mathcal{H}$ -compact relative to *X*.

1. Introduction

In 1967, Newcomb [10] introduced the notion of compactness modulo an ideal. Rančin [13] and Hamlett and Janković [6] further investigated this notion and obtained some more properties of compactness modulo an ideal. Császár [5] introduced the notion of hereditary classes as a generalization of ideals. In [12], a minimal structure and a minimal space (X, m) are introduced and investigated. Let (X, m, \mathcal{H}) be a hereditary *m*-space and $\gamma : m \to P(X)$ be an operation on *m*. A subset *A* of *X* is said to be $\gamma\mathcal{H}$ -compact relative to *X* [3] if for every cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *A* by *m*-open sets of *X*, there exists a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$. Recently, [4] introduced and studied the notions of θ - \mathcal{H} -compact in hereditary *m*-space. Several characterizations of minimal structures with notion of hereditary class were provided in [1,2].

In this paper, we define a subset A of a hereditary m-space (X, m, \mathcal{H}) to be super $\gamma \mathcal{H}$ -compact relative to X if for every family $\{U_{\alpha} : \alpha \in \Delta\}$ of m-open sets of X such that $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $A \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$. Similarly, we define a subset called strongly $\gamma \mathcal{H}$ -compact relative to X and investigate their properties.

O2024Korean Mathematical Society

775

Received August 3, 2023; Revised February 17, 2024; Accepted April 16, 2024. 2020 Mathematics Subject Classification. Primary 54D20, 54D30.

Key words and phrases. Hereditary m-space, γH -compactness, strong γH -compactness,

super $\gamma \mathcal{H}$ -compactness.

2. Preliminaries

Definition 2.1. Let $\mathcal{P}(X)$ be the power set of a nonempty set X. A subfamily m of $\mathcal{P}(X)$ is called a *minimal structure* (briefly *m-structure*) [12] on X if m satisfies the following conditions:

(1) $\emptyset \in m$ and $X \in m$,

(2) The union of any family of subsets belonging to m belongs to m.

A set X with an m-structure m on X is denoted by (X, m) and is called an *m-space*. Each member of m is said to be *m-open* and the complement of an *m*-open set is said to be *m-closed*.

Definition 2.2. Let (X, m) be an *m*-space and *A* a subset of *X*. The *m*-closure mCl(A) and the *m*-interior mInt(A) of *A* [9] are defined as follows:

(1) $\mathrm{mCl}(A) = \cap \{F \subset X : A \subset F, X \setminus F \in m\},\$

(2) mInt(A) = $\cup \{ U \subset X : U \subset A, U \in m \}.$

Lemma 2.3 ([12]). Let (X, m) be an m-space and A a subset of X.

(1) $x \in \mathrm{mCl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m(x)$, where m(x) denotes the family $\{U : x \in U \in m\}$.

(2) A is m-closed if and only if mCl(A) = A.

Definition 2.4. A nonempty subfamily \mathcal{H} of $\mathcal{P}(X)$ is called a *hereditary class* on X [5] if it satisfies the following properties: $A \in \mathcal{H}$ and $B \subset A$ implies $B \in \mathcal{H}$. A hereditary class \mathcal{H} is called an *ideal* ([8], [14]) if it satisfies the additional condition: $A \in \mathcal{H}$ and $B \in \mathcal{H}$ implies $A \cup B \in \mathcal{H}$.

Let $X = \{a, b, c\}$. If $\mathcal{H} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}\}$, then \mathcal{H} is a hereditary class but is not an ideal. Since \mathcal{H} does not contain $\{a, b\}$ so, \mathcal{H} is not an ideal.

A minimal space (X, m) with a hereditary class \mathcal{H} on X is called a *hereditary* minimal space (briefly *hereditary* m-space) and is denoted by (X, m, \mathcal{H}) . The notion of ideals has been introduced in [8] and [14] and further investigated in [7].

Definition 2.5. Let (X, m) be an *m*-space. Let $m\gamma : m \to P(X)$ be a function from *m* into P(X) such that $U \subset m\gamma(U)$ for each $U \in m$. The function $m\gamma$ is called an $m\gamma$ -operation on *m* [11] and the image $m\gamma(U)$ is simply denoted by $\gamma(U)$. In this paper, an $m\gamma$ -operation is simply called a γ -operation.

Let $\gamma = Cl$ (closure). Then $\gamma(A \cup B) = \gamma(A) \cup \gamma(B)$ for any subsets A and B of X.

Definition 2.6. Let (X,m) be an *m*-space and $\gamma : m \to P(X)$ be a γ -operation. A subset *A* of *X* is said to be γ -open [11] if for each $x \in A$ there exists $U \in m$ such that $x \in U \subset \gamma(U) \subset A$. The complement of a γ -open set is said to be γ -closed. The family of all γ -open sets of (X,m) is denoted by $\gamma(X)$. The γ -closure of *A*, γ Cl(*A*), is defined as follows: γ Cl(*A*) = $\cap \{F \subset X : A \subset F, X \setminus F \in \gamma(X)\}$.

Example 2.7. Let $X = \{a, b, c\}$ with $m = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\gamma(A) = Cl(A)$ for any subset A of X. Then, $\{a, b\}$ is an open set but not γ -open. Because when $a \in \{a, b\}$. If $a \in U \in \tau$, then $U = \{a\}, \{a, b\}$ and X. If $U = \{a\}$, then $a \in U \subset \gamma(U) = Cl(U) = \{a, c\}$ and $\gamma(U)$ does not contain in $\{a, b\}$. If $U = \{a, b\}$, then $a \in U \subset \gamma(U) = Cl(U) = X$ and hence $\gamma(U)$ does not contain in $\{a, b\}$. If U = X, then $a \in U \subset \gamma(U) = Cl(U) = X$ and $\gamma(U)$ does not contain in $\{a, b\}$. Therefore, $\{a, b\}$ is not γ -open.

Definition 2.8. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. A subset *A* of *X* is said to be $\gamma \mathcal{H}$ -compact relative to *X* [3] (resp. γ compact relative to *X*) if for each cover $\{U_{\alpha} : \alpha \in \Delta\}$ of *A* by *m*-open sets of *X*, there exists a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$ (resp. $A \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$).

Definition 2.9. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. The space (X, m, \mathcal{H}) is said to be $\gamma \mathcal{H}$ -compact [3] (resp. γ -compact [11]) if X is $\gamma \mathcal{H}$ -compact relative to X (resp. γ -compact relative to X).

3. Super $\gamma \mathcal{H}$ -compact spaces

Definition 3.1. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*.

(1) A subset A of X is said to be super $\gamma \mathcal{H}$ -compact relative to X if for every family $\{U_{\alpha} : \alpha \in \Delta\}$ of m-open sets of X such that $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $A \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$.

(2) $(X, m \mathcal{H})$ is called a *super* $\gamma \mathcal{H}$ -compact space if X is super $\gamma \mathcal{H}$ -compact relative to X.

Remark 3.2. Let (X, m, \mathcal{H}) be a hereditary *m*-space. If $\mathcal{H} = \{\emptyset\}$, then "super $\gamma \mathcal{H}$ -compact relative to X" coincides with " γ -compact relative to X".

Theorem 3.3. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. For a subset *A* of *X*, the following properties are equivalent:

(1) A is super $\gamma \mathcal{H}$ -compact relative to X;

(2) for every family $\{F_{\alpha} : \alpha \in \Delta\}$ of *m*-closed sets of *X* such that $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $A \cap (\cap \{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\}) = \emptyset$.

Proof. (1) \Rightarrow (2): Let $\{F_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-closed sets of X such that $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$. Then, we have

$$A \setminus (\cup \{X \setminus F_{\alpha} : \alpha \in \Delta\}) = A \setminus (X \setminus \cap \{F_{\alpha} : \alpha \in \Delta\})$$
$$= A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}.$$

Since $X \setminus F_{\alpha}$ is *m*-open for each $\alpha \in \Delta$, by (1) there exists a finite subset Δ_0 of Δ such that $A \subset \bigcup \{X \setminus F_{\alpha} : \alpha \in \Delta_0\} \subset \bigcup \{\gamma(X \setminus F_{\alpha}) : \alpha \in \Delta_0\}$. Therefore, we have

$$A \cap [X \setminus (\cup \{\gamma(X \setminus F_{\alpha}) : \alpha \in \Delta_0\})]$$

$$= A \cap \left(\cap \{ [X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0 \} \right)$$
$$= \emptyset$$

 $\begin{array}{ll} (2) \Rightarrow (1): \ \text{Let } \{U_{\alpha} : \alpha \in \Delta\} \ \text{be any family of } m\text{-open sets of } X \ \text{such that } A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}. \ \text{Then, } \{X \setminus U_{\alpha} : \alpha \in \Delta\} \ \text{is a family of } m\text{-closed sets such that } A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} = A \cap (X \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\}) = A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\}) \ \text{and hence } A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}. \ \text{By } (2), \ \text{there exists a finite subset } \Delta_0 \ \text{of } \Delta \ \text{such that } A \cap (\cap [X \setminus \gamma(X \setminus (X \setminus U_{\alpha})) : \alpha \in \Delta_0]) = A \cap (\cap [X \setminus \gamma(U_{\alpha}) : \alpha \in \Delta_0]) = \emptyset. \ \text{Therefore, } A \cap (X \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}) = \emptyset \ \text{and hence, } A \subset \cup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}. \ \text{This shows that } A \ \text{is super } \gamma \mathcal{H}\text{-compact relative to } X. \end{array}$

Corollary 3.4. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. Then, the following properties are equivalent:

(1) (X, m, \mathcal{H}) is super $\gamma \mathcal{H}$ -compact;

(2) for every family $\{F_{\alpha} : \alpha \in \Delta\}$ of *m*-closed sets of *X* such that $\cap\{F_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $\cap\{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\} = \emptyset$.

Definition 3.5. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. A subset *A* of *X* is said to be $\mathcal{H}\gamma g$ -closed if $\gamma Cl(A) \subset U$ whenever, $A \setminus U \in \mathcal{H}$ and *U* is *m*-open.

Example 3.6. Let $X = \{a, b, c\}, m = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, A = \{a\}$ and $\mathcal{H} = \{\emptyset, \{c\}\}$. Then, (X, m, \mathcal{H}) is a hereditary *m*-space and let $\gamma = Cl$. Let $U = \{a\}$. Then $A \subseteq U$ and $Cl(A) \setminus U = \{a, c\} \setminus \{a\} = \{c\} \in \mathcal{H}$. Let $U = \{a, b\}$. Then $A \subseteq U$ and $Cl(A) \setminus U = \{a, c\} \setminus \{a, b\} = \{c\} \in \mathcal{H}$. Let U = X. Then $A \subseteq U$ and $Cl(A) \setminus U = \{a, c\} \setminus \{a, b\} = \{c\} \in \mathcal{H}$. Let U = X. Then $A \subseteq U$ and $Cl(A) \setminus U = \{a, c\} \setminus \{a, b\} = \{c\} \in \mathcal{H}$. Let U = X. Then $A \subseteq U$ and $Cl(A) \setminus U = \{a, c\} \setminus X = \emptyset \in \mathcal{H}$. Therefore, A is an $\mathcal{H}_{\gamma}g$ -closed set.

Theorem 3.7. Let (X, m, \mathcal{H}) be a hereditary m-space, γ be a γ -operation on m and A, B be subsets of X such that $A \subset B \subset \gamma \operatorname{Cl}(A)$ and A is $\mathcal{H}\gamma g$ -closed, then the following properties hold:

(1) if $\gamma Cl(A)$ is γ -compact relative to X, then B is super $\gamma \mathcal{H}$ -compact relative to X,

(2) if B is γ -compact relative to X, then A is super $\gamma \mathcal{H}$ -compact relative to X.

Proof. (1): Suppose that $\gamma \operatorname{Cl}(A)$ is $\gamma \mathcal{H}$ -compact relative to X. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of m-open sets of X such that $B \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Then, $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Since A is $\mathcal{H}\gamma g$ -closed, $\gamma \operatorname{Cl}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta\}$. Since $\gamma \operatorname{Cl}(A)$ is γ -compact relative to X, there exists a finite subset Δ_0 of Δ such that $\gamma \operatorname{Cl}(A) \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$. Since $B \subset \gamma \operatorname{Cl}(A)$, we have $B \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$. Therefore, B is super $\gamma \mathcal{H}$ -compact relative to X.

(2): Suppose that B is γ -compact relative to X. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of m-open sets in X such that $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Since A is $\mathcal{H}\gamma g$ -closed, $\gamma \operatorname{Cl}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta\}$. Hence, we have $B \subset \gamma \operatorname{Cl}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta\}$.

 $\alpha \in \Delta$ }. Since *B* is γ -compact relative to *X*, there exists a finite subset Δ_0 of Δ such that $B \subset \cup \{\gamma(U_\alpha) : \alpha \in \Delta_0\}$. Since $A \subset B, A \subset \cup \{\gamma(U_\alpha) : \alpha \in \Delta_0\}$. Therefore, *A* is super $\gamma \mathcal{H}$ -compact relative to *X*.

Theorem 3.8. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. If subsets *A* and *B* of *X* are super $\gamma \mathcal{H}$ -compact relative to *X*, then $A \cup B$ is super $\gamma \mathcal{H}$ -compact relative to *X*.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-open sets of *X* such that $(A \cup B) \setminus \cup \{U_{\alpha} \in \Delta\} \in \mathcal{H}$. Then, we have $A \setminus \cup \{U_{\alpha} \in \Delta\} \in \mathcal{H}$ and $B \setminus \cup \{U_{\alpha} \in \Delta\} \in \mathcal{H}$. Since *A* and *B* are super $\gamma \mathcal{H}$ -compact relative to *X*, there exist finite subsets Δ_A and Δ_B of Δ such that $A \subset \cup \{\gamma \operatorname{Cl}(U_{\alpha}) : \alpha \in \Delta_A\}$ and $B \subset \cup \{\gamma \operatorname{Cl}(U_{\alpha}) : \alpha \in \Delta_B\}$. Hence, we have $A \cup B \subset \cup \{\gamma \operatorname{Cl}(U_{\alpha}) : \alpha \in \Delta_A \cup \Delta_B\}$. $\Delta_A \cup \Delta_B$ is a finite subset of Δ . Therefore, $A \cup B$ is super $\gamma \mathcal{H}$ -compact relative to *X*.

Theorem 3.9. Let (X, m, \mathcal{H}) be a hereditary *m*-space, γ be a γ -operation on *m* and *A*, *B* be subsets of *X*. If *A* is super $\gamma \mathcal{H}$ -compact relative to *X* and *B* is γ -closed, then $A \cap B$ is super $\gamma \mathcal{H}$ -compact relative to *X*.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be a family of *m*-open sets of *X* such that $(A \cap B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Since *B* is γ -closed, $X \setminus B$ is γ -open and for each $x \in X \setminus B$, there exists $V_x \in m$ such that $x \in V_x \subset \gamma(V_x) \subset X \setminus B$. Hence $\{U_{\alpha} : \alpha \in \Delta\} \cup [\bigcup \{V_x : x \in X \setminus B\}]$ is a family of *m*-open sets of *X*. $(A \cap B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} = A \setminus [(X \setminus B) \cup (\bigcup \{U_{\alpha} : \alpha \in \Delta\})] = A \setminus [(\bigcup \{V_x : x \in X \setminus B\}) \cup (\bigcup \{U_{\alpha} : \alpha \in \Delta\})] \in \mathcal{H}$. Since *A* is super $\gamma\mathcal{H}$ -compact relative to *X*, there exist finite subset Δ_0 of Δ and finite points x_1, x_2, \ldots, x_n in $X \setminus B$ such that $A \subset [(\bigcup \{\gamma(V_{x_i}) : i = 1, 2, \ldots, n\}) \cup (\bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\})]$. Since $B \cap \gamma(V_{x_i}) = \emptyset$ for each x_i $(i = 1, 2, \ldots, n), A \cap B \subset [\bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}] \cap B \subset \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}$. Therefore, $A \cap B$ is super $\gamma\mathcal{H}$ -compact relative to *X*. \Box

Corollary 3.10. If a hereditary m-space (X, m, \mathcal{H}) is super $\gamma \mathcal{H}$ -compact and B is γ -closed, then B is super $\gamma \mathcal{H}$ -compact relative to X.

Definition 3.11. A function $f : (X, m) \to (Y, n)$ is said to be (γ, δ) -closed if for each $y \in Y$ and $U \in m$ containing $f^{-1}(y)$, there exists $V \in n$ containing y such that $f^{-1}(\delta(V)) \subseteq \gamma(U)$.

Definition 3.12. Let (X, m, \mathcal{H}) be a hereditary *m*-space.

(1) A subset A of X is said to be super \mathcal{H} -compact relative to X if for every family $\{U_{\alpha} : \alpha \in \Delta\}$ of m-open sets of X such that $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $A \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$.

(2) $(X, m \mathcal{H})$ is called a super \mathcal{H} -compact space if X is super \mathcal{H} -compact relative to X.

Theorem 3.13. Let $f : (X, m) \to (Y, n, \mathcal{H})$ be a (γ, δ) -closed surjective function such that $\gamma(U \cup V) = \gamma(U) \cup \gamma(V)$ for each $U, V \in m$. If $f^{-1}(y)$ is super \mathcal{H} -compact relative to X for each $y \in Y$ and B is δ -compact relative to Y, then $f^{-1}(B)$ is super $\gamma f^{-1}(\mathcal{H})$ -compact relative to X. Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-open sets of *X* such that $f^{-1}(B) \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in f^{-1}(\mathcal{H})$. Then, for each $y \in B$, since $f^{-1}(y)$ is super \mathcal{H} -compact relative to *X*, there exists a finite subset $\Delta(y)$ of Δ such that $f^{-1}(y) \subseteq \cup \{U_{\alpha} : \alpha \in \Delta(y)\} = U_y$. Since U_y is an *m*-open set of *X* containing $f^{-1}(y)$ and *f* is (γ, δ) -closed there exists a *n*-open set V_y containing *y* such that $f^{-1}(\delta(V_y)) \subseteq \gamma(U_y)$. Since $\{V_y : y \in B\}$ is an *n*-open cover of *B* and *B* is δ -compact relative to *Y*, there exists a finite subset B_0 of *B* such that $B \subseteq \cup \{\delta(V_y) : y \in B_0\}$. Hence, we have

$$f^{-1}(B) \subseteq \cup \{f^{-1}(\delta(V_y)) : y \in B_0\}$$
$$\subseteq \cup \{\gamma(U_y) : y \in B_0\}$$
$$\subseteq \cup \{\gamma(U_\alpha) : \alpha \in \Delta(y), y \in B_0\}.$$

We obtain $f^{-1}(B) \subseteq \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta(y), y \in B_0\}$. This shows that $f^{-1}(B)$ is super $\gamma f^{-1}(\mathcal{H})$ -compact relative to Y.

Corollary 3.14. Let $f: (X,m) \to (Y,n,\mathcal{H})$ be a (γ,δ) -closed surjective function such that $\gamma(U \cup V) = \gamma(U) \cup \gamma(V)$ for each $U, V \in m$. If $f^{-1}(y)$ is super \mathcal{H} -compact relative to X for each $y \in Y$ and B is super $\delta \mathcal{H}$ -compact relative to Y, then $f^{-1}(B)$ is super $\gamma f^{-1}(\mathcal{H})$ -compact relative to X.

Corollary 3.15. Let $f: (X,m) \to (Y,n,\mathcal{H})$ be a (γ,δ) -closed surjective function such that $\gamma(U \cup V) = \gamma(U) \cup \gamma(V)$ for each $U, V \in m$. If $f^{-1}(y)$ is super \mathcal{H} -compact relative to X for each $y \in Y$ and Y is δ -compact, then X is super $\gamma f^{-1}(\mathcal{H})$ -compact.

4. Strongly $\gamma \mathcal{H}$ -compact spaces

Definition 4.1. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*.

(1) A subset A of X is said to be strongly $\gamma \mathcal{H}$ -compact relative to X if for every family $\{U_{\alpha} : \alpha \in \Delta\}$ of m-open sets of X such that $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$.

(2) (X, m, \mathcal{H}) is said to be strongly $\gamma \mathcal{H}$ -compact if X is strongly $\gamma \mathcal{H}$ -compact relative to X.

Theorem 4.2. Let (X, m, \mathcal{H}) be a hereditary *m*-space and γ be a γ -operation on *m*. For a subset *A* of *X*, the following properties are equivalent:

(1) A is strongly $\gamma \mathcal{H}$ -compact relative to X;

(2) for every family $\{F_{\alpha} : \alpha \in \Delta\}$ of m-closed sets of X such that

$$A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H},$$

there exists a finite subset Δ_0 of Δ such that

 $A \cap (\cap \{ [X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0 \}) \in \mathcal{H}.$

Proof. (1) \Rightarrow (2): Let $\{F_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-closed sets of X such that $A \cap (\cap\{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$. Then, $A \setminus \bigcup\{X \setminus F_{\alpha} : \alpha \in \Delta\}) = A \setminus (X \setminus \cap\{F_{\alpha} : \alpha \in \Delta\}) = A \cap (\cap\{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$. Since $X \setminus F_{\alpha}$ is *m*-open for each $\alpha \in \Delta$ and A is strongly $\gamma\mathcal{H}$ -compact relative to X by (1), there exists a finite subset Δ_0 of Δ such that $A \setminus \bigcup\{\gamma(X \setminus F_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$. This implies that $A \cap (\cap\{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\}) = A \setminus (X \setminus (\cap\{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\}) = A \setminus \bigcup\{\gamma(X \setminus F_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$.

 $\begin{array}{ll} (2) \Rightarrow (1): \ \text{Let } \{U_{\alpha} : \alpha \in \Delta\} \ \text{be a family of } m\text{-open sets of } X \ \text{such that} \\ A \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}. \ \text{Then, } \{X \setminus U_{\alpha} : \alpha \in \Delta\} \ \text{is a family of } m\text{-closed sets of} \\ X \ \text{and also} \ A \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} = A \cap (X \setminus \cup \{U_{\alpha} : \alpha \in \Delta\}) = A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\}) = A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}. \ \text{Thus, by } (2) \ \text{there exists a finite subset } \Delta_0 \ \text{of } \Delta \ \text{such that} \\ A \cap (\cap \{X \setminus \gamma(U_{\alpha}) : \alpha \in \Delta_0\}) \in \mathcal{H}. \ \text{Therefore, we have} \ A \setminus \cup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}) \in \mathcal{H}. \ \text{This shows that} \ A \ \text{is strongly } \gamma \mathcal{H}\text{-compact relative to } X. \end{array}$

Corollary 4.3. For a hereditary m-space (X, m, \mathcal{H}) , the following properties are equivalent, where γ is a γ -operation on m:

(1) (X, m, \mathcal{H}) is strongly $\gamma \mathcal{H}$ -compact;

(2) for every family $\{F_{\alpha} : \alpha \in \Delta\}$ of *m*-closed sets of *X* such that $\cap\{F_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, there exists a finite subset Δ_0 of Δ such that $\cap\{[X \setminus \gamma(X \setminus F_{\alpha})] : \alpha \in \Delta_0\} \in \mathcal{H}$.

Theorem 4.4. Let (X, m, \mathcal{H}) be a hereditary *m*-space, γ be a γ -operation on *m* and *A*, *B* be subsets of *X* such that *A* is $\mathcal{H}\gamma g$ -closed and $A \subset B \subset \gamma \operatorname{Cl}(A)$, then the following properties hold:

(1) if $\gamma Cl(A)$ is γH -compact relative to X, then B is strongly γH -compact relative to X,

(2) if B is $\gamma \mathcal{H}$ -compact relative to X, then A is strongly $\gamma \mathcal{H}$ -compact relative to X.

Proof. (1): Suppose that $\gamma \operatorname{Cl}(A)$ is $\gamma \mathcal{H}$ -compact relative to X. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of m-open sets of X such that $B \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Then, $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ and $\bigcup \{U_{\alpha} : \alpha \in \Delta\} \in m$. Since A is $\mathcal{H}mg$ -closed, $\gamma \operatorname{Cl}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta\}$. Since $\gamma \operatorname{Cl}(A)$ is $\gamma \mathcal{H}$ -compact relative to X, there exists a finite subset Δ_0 of Δ such that $\gamma \operatorname{Cl}(A) \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$ and hence $B \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$. Therefore, B is strongly $\gamma \mathcal{H}$ -compact relative to X.

(2): Suppose that B is $\gamma \mathcal{H}$ -compact relative to X. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of m-open sets of X such that $A \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Since A is $\mathcal{H}mg$ -closed, we have $B \subset \gamma \operatorname{Cl}(A) \subset \cup \{U_{\alpha} : \alpha \in \Delta\}$. Since B is $\gamma \mathcal{H}$ -compact relative to X, there exists a finite subset Δ_0 of Δ such that $B \setminus \cup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$. Since $A \subset B, A \setminus \cup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$. Hence, A is strongly $\gamma \mathcal{H}$ -compact relative to X.

Theorem 4.5. Let (X, m, \mathcal{H}) be an ideal *m*-space and γ be a γ -operation on *m*. If subsets *A* and *B* of *X* are strongly $\gamma \mathcal{H}$ -compact relative to *X*, then $A \cup B$ is strongly $\gamma \mathcal{H}$ -compact relative to *X*.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-open sets of *X* such that $(A \cup B) \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Then, $A \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ and $B \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Since *A* and *B* are strongly $\gamma \mathcal{H}$ -compact relative to *X*, there exist finite subsets Δ_A and Δ_B of Δ and subsets H_A and H_B of \mathcal{H} such that $A \subset \cup \{U_{\alpha} : \alpha \in \Delta_A\} \cup H_A$ and $B \subset \cup \{U_{\alpha} : \alpha \in \Delta_B\} \cup H_B$. Hence, we have $(A \cup B) \subset \cup \{U_{\alpha} : \alpha \in \Delta_A \cup \Delta_B\} \cup (H_A \cup H_B)$. Since \mathcal{H} is an ideal, we have $(A \cup B) \setminus \cup \{U_{\alpha} : \alpha \in \Delta_A \cup \Delta_B\} \in \mathcal{H}$. This shows that $A \cup B$ is strongly $\gamma \mathcal{H}$ -compact relative to *X*.

Theorem 4.6. Let (X, m, \mathcal{H}) be a hereditary m-space, γ a γ -operation on m and A, B be subsets of X. If A is strongly $\gamma \mathcal{H}$ -compact relative to X and B is γ -closed, then $A \cap B$ is strongly $\gamma \mathcal{H}$ -compact relative to X.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-open sets of *X* such that $(A \cap B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Since *B* is γ -closed, $X \setminus B$ is γ -open and for each $x \in X \setminus B$, there exists $V_x \in m$ such that $x \in V_x \subset \gamma(V_x) \subset X \setminus B$. Hence, $\{U_{\alpha} : \alpha \in \Delta\} \cup [\bigcup \{V_x : x \in X \setminus B\}]$ is a family of *m*-open sets of *X*. $(A \cap B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} = A \setminus [(X \setminus B) \cup (\bigcup \{U_{\alpha} : \alpha \in \Delta\})] = A \setminus [\bigcup \{V_x : x \in X \setminus B\} \cup (\bigcup \{U_{\alpha} : \alpha \in \Delta\})] = A \setminus [\bigcup \{V_x : x \in X \setminus B\} \cup (\bigcup \{U_{\alpha} : \alpha \in \Delta\})] = \mathcal{H}$. Since *A* is strongly $\gamma \mathcal{H}$ -compact relative to *X*, there exist finite subset Δ_0 of Δ and finite points $x_1, x_2, ..., x_n$ in $X \setminus B$ such that $A \setminus [\bigcup \{\gamma(V_{x_i}) : i = 1, 2, ..., n\} \cup (\bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\})] \in \mathcal{H}$. Since $B \cap \gamma(V_{x_i}) = \emptyset$ for each x_i $(i = 1, 2, ..., n), A \cap B \setminus [\bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\}] \in \mathcal{H}$. Therefore, $A \cap B$ is strongly $\gamma \mathcal{H}$ -compact relative to *X*. \Box

Corollary 4.7. If a hereditary m-space (X, m, \mathcal{H}) is strongly $\gamma \mathcal{H}$ -compact and B is γ -closed, then B is strongly $\gamma \mathcal{H}$ -compact relative to X.

Theorem 4.8. Let $f: (X,m) \to (Y,n,\mathcal{H})$ be a (γ,δ) -closed surjective function such that $\gamma(U \cup V) = \gamma(U) \cup \gamma(V)$ for each $U, V \in m$. If $f^{-1}(y)$ is super \mathcal{H} compact relative to X for each $y \in Y$ and B is $\delta \mathcal{H}$ -compact relative to Y, then $f^{-1}(B)$ is strongly $\gamma f^{-1}(\mathcal{H})$ -compact relative to X.

Proof. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be any family of *m*-open sets of *X* such that $f^{-1}(B) \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in f^{-1}(\mathcal{H})$. Then, for each $y \in B$, since $f^{-1}(y)$ is super \mathcal{H} -compact relative to *X*, there exists a finite subset $\Delta(y)$ of Δ such that $f^{-1}(y) \subseteq \cup \{U_{\alpha} : \alpha \in \Delta(y)\} = U_y$. Since U_y is an *m*-open set of *X* containing $f^{-1}(y)$ and *f* is (γ, δ) -closed, there exists an *n*-open set V_y containing *y* such that $f^{-1}(\delta(V_y)) \subseteq \gamma(U_y)$. Since $\{V_y : y \in B\}$ is an *n*-open cover of *B* and *B* is $\delta\mathcal{H}$ -compact relative to *Y*, there exists a finite subset B_0 of *B* such that $B \setminus \cup \{\delta(V_y) : y \in B_0\} \in \mathcal{H}$. Therefore, $B \subseteq \cup \{\delta(V_y) : y \in B_0\} \cup H_0$, where $H_0 \in \mathcal{H}$. Hence, we have

$$f^{-1}(B) \subseteq \bigcup \{ f^{-1}(\delta(V_y)) : y \in B_0 \} \cup f^{-1}(H_0)$$

$$\subseteq \cup \{\gamma(U_y) : y \in B_0\} \cup f^{-1}(H_0)$$
$$\subseteq \cup \{\gamma(U_\alpha) : \alpha \in \Delta(y), y \in B_0\} \cup f^{-1}(H_0)$$

We obtain $f^{-1}(B) \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta(y), y \in B_0\} \in f^{-1}(\mathcal{H})$. This shows that $f^{-1}(B)$ is strongly $\gamma f^{-1}(\mathcal{H})$ -compact relative to Y.

Corollary 4.9. Let $f: (X,m) \to (Y,n,\mathcal{H})$ be a (γ,δ) -closed surjective function such that $\gamma(U \cup V) = \gamma(U) \cup \gamma(V)$ for each $U, V \in m$. If $f^{-1}(y)$ is super \mathcal{H} compact relative to X for each $y \in Y$ and B is strongly $\delta \mathcal{H}$ -compact relative to Y, then $f^{-1}(B)$ is strongly $\gamma f^{-1}(\mathcal{H})$ -compact relative to X.

Corollary 4.10. Let $f : (X, m) \to (Y, n, \mathcal{H})$ be a (γ, δ) -closed surjective function such that $\gamma(U \cup V) = \gamma(U) \cup \gamma(V)$ for each $U, V \in m$. If $f^{-1}(y)$ is super \mathcal{H} -compact relative to X for each $y \in Y$ and Y is $\delta \mathcal{H}$ -compact, then X is strongly $\gamma f^{-1}(\mathcal{H})$ -compact.

Remark 4.11. We have the following relationships:

Remark 4.12. The following examples show that " γ -compact relative to X" and "strongly $\gamma \mathcal{H}$ -compact relative to X" are independent of each other. Therefore, the converse of the above four implications are not necessarily true.

Example 4.13. Let \mathcal{R} be the set of real numbers with the usual topology, X = [1,2] and $m = \{X \cap (a,b) : a < b, a, b \in \mathcal{R}\}$. Then, it is clear that (X,m) is a topological space and an *m*-space. Let $\mathcal{H} = \{\emptyset, \{1\}, \{2\}\}$. Let γ be a γ -operation on *m* such that $\gamma(U) = \operatorname{Cl}(U)$ for each $U \in m$. Observe that (X,m) is γ -compact relative to X but (X,m,\mathcal{H}) is not strongly $\gamma\mathcal{H}$ -compact relative to X. In fact if $U_n = (1 + \frac{1}{n}, 2]$ for all integer numbers n > 1, then $X \setminus \bigcup_{n>1} U_n = \{1\} \in \mathcal{H}$. If we take $N = \max\{n_1, n_2, \ldots, n_k\}, k \in \mathbb{Z}$ and n_1, n_2, \ldots, n_k are integer numbers, then $X \setminus \bigcup_{i=1}^k \gamma(U_{n_i}) = X \setminus [1 + \frac{1}{N}, 2] = [1, 1 + \frac{1}{N}) \notin \mathcal{H}$.

Example 4.14. Let \mathcal{R} be the set of real numbers with the usual topology τ . Let X = (0,1), m the relative topology of τ on X, $\mathcal{H} = \{A : A \subseteq (0,1)\}$ and $\gamma(U) = \operatorname{Cl}(U)$ for each $U \in m$. Then (X, m, \mathcal{H}) is strongly $\gamma\mathcal{H}$ -compact relative to X but (X, m) is not γ -compact relative to X. Because an m-open cover $\{(0 + \frac{1}{n}, 1 - \frac{1}{n}) : n \in \mathbb{Z}^+\}$ of X has no finite γ -closure subcover.

Acknowledgments. The authors are highly grateful to editors and referees for their valuable comments and suggestions for improving the paper.

References

 A. Al-Omari, H. Al-Saadi, and T. Noiri, On extremally disconnected spaces via mstructures, Commun. Korean Math. Soc. 34 (2019), no. 1, 351-359. https://doi.org/ 10.4134/CKMS.c170478

- [2] A. Al-Omari, S. Modak, and T. Noiri, On θ-modifications of generalized topologies via hereditary classes, Commun. Korean Math. Soc. 31 (2016), no. 4, 857–868. https: //doi.org/10.4134/CKMS.c160002
- [3] A. Al-Omari and T. Noiri, Properties of γH-compact spaces with hereditary classes, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 98 (2020), no. 2, A4, 11 pp. https://doi.org/10.1478/AAPP.982A4
- [4] A. Al-Omari and T. Noiri, Properties of θ-H-compact sets in hereditary m-spaces, Acta Comment. Univ. Tartu. Math. 26 (2022), no. 2, 193-206. https://doi.org/10.12697/ ACUTM.2022.26.13
- [5] Á. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), no. 1-2, 29-35. https://doi.org/10.1007/s10474-006-0531-9
- [6] T. R. Hamlett and D. S. Janković, Compactness with respect to an ideal, Boll. Un. Mat. Ital. B (7) 4 (1990), no. 4, 849–861.
- [7] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), no. 4, 295–310. https://doi.org/10.2307/2324512
- [8] K. Kuratowski, Topology. Vol. I, new edition, revised and augmented., translated from the French by J. Jaworowski, Academic Press, New York, 1966.
- [9] H. Maki, K. C. Rao, and A. Nagoor Gani, On generalizing semi-open sets and preopen sets, Pure Appl. Math. Sci. 49 (1999), no. 1-2, 17–29.
- [10] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.
- [11] T. Noiri, A unified theory for generalizations of compact spaces, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 54 (2011), 79–96.
- [12] V. Popa and T. Noiri, On M-continuous functions, An. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor. (2), 43(23) (2000), 31–41.
- [13] D. V. Rančin, Compactness modulo an ideal, Soviet Math. Dokl., 13 (1972), 193-197.
- [14] R. Vaidyanathaswamy, The localisation theory in set-topology, Proc. Indian Acad. Sci., Sect. A. 20 (1944), 51–61.

Ahmad Al-Omari Department of Mathematics Faculty of Sciences Al al-Bayt University Mafraq 25113, Jordan Email address: omarimutah1@yahoo.com

Takashi Noiri 2949-1 Shiokita-cho, Hinagu Yatsushiro-shi, Kumamoto-ken, 869-5142, Japan *Email address*: t.noiri@nifty.com

784