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KINEMATICAL INVARIANTS AND APPLICATIONS FOR

SURFACES IN THREE DIMENSIONAL EUCLIDEAN SPACE

Seoung Dal Jung∗, Huili Liu∗∗, and Yixuan Liu

Abstract. In three dimensional Euclidean space we consider kinematical

invariants of the surface which is generated by the motion of a planar
curve, especially, the surface which is foliated by circles. At first we

characterize the properties of single parameter plane with the theories
of unit spherical curve in three dimensional Euclidean space. Then using

these results we give the invariants and differential invariants, kinematical

properties and some special examples of the surface foliated by circles.
The methods established here can be used to the other kinds of the surface

in three dimensional Euclidean space.

1. Introduction

The ruled surfaces are the simplest foliated submanifolds. In [6, 12], the
authors defined three invariants for the non-developable ruled surfaces, called
structure functions in three dimensional Euclidean space and gave also the
deep relationship between the structure functions and the kinematical char-
acterization of the structure functions of the non-developable ruled surface.
Some properties and applications of these notions and theories are also given
in [2–7, 12]. The structure functions of the non-developable ruled surface are
related to the motion of the ruling of ruled surface and are differential invari-
ant. By integration they are strongly related to the integral invariants given
by Müller [8] in 1951 and Pottmann and Röschel [9] in 1988.

In this paper, we consider kinematical invariants of the surface which is
generated by the motion of a planar curve. Especially we study the surfaces
which are foliated by circles in three dimensional Euclidean space using the
different ideas and methods [1,10,11]. Since the surfaces foliated by circles are
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generated by single parameter circles, at first we characterize the properties
of single parameter plane with the theories of unit spherical curve in three
dimensional Euclidean space and define associated intersection ruled surfaces
of this single parameter plane. Then using these notions and conclusions we give
the invariants and differential invariants of the surface foliated by circles and
discuss the properties, kinematical characterization and some special examples
of the surface foliated by circles. The methods established here can be used
to study the surface which are foliated by a planar curve in three dimensional
Euclidean space.

2. Preliminaries

In this section we briefly summarize the main notions and formulas of the
space curves and spherical curves in three dimensional Euclidean space (simply
Euclidean 3-space) for the convenient usage in the coming sections. We denote
the Euclidean 3-space by E3 and standard unit sphere in E3 by S2 = S2(1) ⊂ E3.

Let r(s) : I → E3 be a regular space curve in Euclidean 3-space E3 parame-
terized by its arc length s. Denote the Frenet frame field along r(s) by {α(s),
β(s), γ(s)}, that is, α(s) = ṙ(s) is the tangent vector field, β(s) = |α̇(s)|−1α̇(s)
the (principal) normal vector field and γ(s) = α(s)× β(s) the binormal vector
field of r(s), respectively. Here we use “dot” to denote the derivative with re-
spect to the arc length parameter of the curve r(s), and × the vector product
of two vectors in E3. The famous Frenet formulas of the curve r(s) are given
by

(2.1)


α̇(s) = κ(s)β(s),

β̇(s) = −κ(s)α(s) + τ(s)γ(s),
γ̇(s) = −τ(s)β(s),

where κ(s) and τ(s) are the curvature function and torsion function of the
curve r(s) in E3.

If r(s) = x(s) : I → S2 ⊂ E3 is a unit spherical curve, let α0(s) := ẋ(s) and
y(s) := α0(s) × x(s). Then α0(s), x(s) and y(s) form an orthonormal basis
along the curve x(s) in E3. We call {α0(s), x(s), y(s)} the spherical Frenet
frame of (unit) spherical curve x(s) in E3. Then there exists a function κg(s)
such that

(2.2)

 α̇0(s) = −x(s) + κg(s)y(s),
ẋ(s) = α0(s),
ẏ(s) = −κg(s)α0(s).

We call κg(s) spherical curvature function of the (unit) spherical curve x(s) in
E3. In the following we call the unit spherical curve simply as the spherical
curve. By a direct calculation or from (2.2) we have

(2.3) y(s) =
1√

⟨ẍ(s), ẍ(s)⟩ − 1
[x(s) + ẍ(s)].
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3. Spherical curve and Frenet moving frame

In this section we give some conclusions and properties which are strongly
related to the one parameter moving frame which is considered as the spherical
Frenet frame of the unit spherical curve in Euclidean 3-space.

For the unit spherical curve x(u) : I → S2 ⊂ E3, choosing u as the arc length
parameter of x(u) and putting x′(u) = α0(u), y(u) = α0(u) × x(u), then the
spherical Frenet formulas of unit spherical curve x(u) can be written as

(3.1)

 x′(u) = x(u)× Ω(u) = α0(u),
α′
0(u) = α0(u)× Ω(u) = −x(u) + κg(u)y(u),
y′(u) = y(u)× Ω(u) = −κg(u)α0(u),

where Ω(u) = κg(u)x(u) + y(u) is Darboux vector field of the frame {α0(u),
x(u), y(u)}. The function κg(u) is called the spherical curvature function, and
the moving frame {α0(u), x(u), y(u)} is called the spherical Frenet frame of
(unit) spherical curve x(u) ([6]).

Let a(u) : I → E3 be any regular curve in E3. We consider the motion of
the frame {α0(u), x(u), y(u)} along the curve a(u). We take

a′(u) =
da(u)

du
(3.2)

= [a′(u) · α0(u)]α0(u) + [a′(u) · x(u)]x(u)
+ [a′(u) · y(u)]y(u)

= (a′α0)α0 + (a′x)x+ (a′y)y

= ξα0 + ηx+ ψy,

where

(3.3)

 ξ = ξ(u) = a(u)′ · α0(u) = a′α0,
η = η(u) = a′(u) · x(u) = a′x,
ψ = ψ(u) = a′(u) · y(u) = a′y.

We use π1(u) to denote the plane spanned by y(u) and α0(u), π2(u) the
plane spanned by α0(u) and x(u), π3(u) the plane spanned by x(u) and y(u).

From the point a(u0) to point a(u0+∆u), we denote the straight line of the
intersection of two planes πi(u0) and πi(u0 +∆u) by li(u0 +∆u), i = 1, 2, 3.

Definition 3.1. The ruled surface Yi(u, v) generated by

(3.4) li(u) = lim
∆u→0

li(u+∆u)

is called the associated intersection ruled surface of πi(u) (i = 1, 2, 3). The
straight line li(u) is called rolling line (or axis line) of πi(u) or the moving
frame {α0(u), x(u), y(u)} at u (i = 1, 2, 3).

The unit vector of the direction of the intersection line l1(u0 +∆u) is

x(u0 +∆u)× x(u0)

|x(u0 +∆u)× x(u0)|
=

[x(u0 +∆u)− x(u0)]× x(u0)

|[x(u0 +∆u)− x(u0)]× x(u0)|
.
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Therefore we have

lim
∆u→0

x(u0 +∆u)× x(u0)

|x(u0 +∆u)× x(u0)|
(3.5)

= lim
∆u→0

[x(u0 +∆u)− x(u0)]× x(u0)

|[x(u0 +∆u)− x(u0)]× x(u0)|

=
α0(u0)× x(u0)

|α0(u0)× x(u0)|
= y(u0).

Proposition 3.1. Associated intersection ruled surface of π1(u) can be written
as

Y1(u, v) = a(u) + [a′(u) · x(u)]α0(u) + vy(u)(3.6)

= a(u) + η(u)α0(u) + vy(u)

and is always developable.

Proof. Let Z be the point on the intersection line l1(u + ∆u) of two planes
π1(u) and π1(u+∆u). Then

{Z − a(u)} · x(u) = 0,(3.7)

{Z − a(u+∆u)} · x(u+∆u) = 0.(3.8)

Using

(3.9)

{
a(u+∆u) = a(u) + a′(u)∆u+ o(∆u2),
x(u+∆u) = x(u) + α0(u)∆u+ o(∆u2),

and (3.7), from (3.8) we have

(3.10) {Z − a(u)} · α0(u)− a′(u) · x(u) + o(∆u) = 0.

Therefore we get (3.6).
For the developable condition of the ruled surface Y1(u, v), we have

{a(u) + [a′(u) · x(u)]α0(u)}′ · y(u)× y′(u)

= [a+ (a′ · x)α0]
′ · y × (−κgα0)

= − κg[a+ (a′ · x)α0]
′ · x

= − κg[(a
′ · x)− (a′ · x)]

= 0.

Therefore Y1(u, v) is always a developable ruled surface. □

The striction line of Y1(u, v) is

A1(u) = a(u) + [a′(u) · x(u)]α0(u)(3.11)

+
a′(u) · α0(u) + [a′(u) · x(u)]′

κg(u)
y(u)
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= a(u) + η(u)α0(u) +
ξ(u) + η′(u)

κg(u)
y(u).

By a direct calculation we have

(3.12) A′
1(u) = ψy + ηκgy +

[
ξ(u) + η′(u)

κg(u)

]′
y.

Proposition 3.2. Associated intersection ruled surface of π2(u) can be written
as

Y2(u, v) = a(u)− κ−1
g (u)[a′(u) · y(u)]α0(u) + vx(u)(3.13)

= a(u)− κ−1
g (u)ψ(u)α0(u) + vx(u)

and is always developable, where κg(u) ̸= 0.

Proof. The direction of the ruling l2(u) of Y2(u, v) is

lim
∆u→0

y(u0 +∆u)× y(u0)

|y(u0 +∆u)× y(u0)|
(3.14)

= lim
∆u→0

[y(u0 +∆u)− y(u0)]× y(u0)

|[y(u0 +∆u)− y(u0)]× y(u0)|

=
−κg(u0)α0(u0)× y(u0)

| − κg(u0)α0(u0)× y(u0)|
= ± x(u0).

Let Z be the point on the intersection line l2(u + ∆u) of two planes π2(u)
and π2(u+∆u). Then

{Z − a(u)} · y(u) = 0,(3.15)

{Z − a(u+∆u)} · y(u+∆u) = 0.(3.16)

Using

(3.17)

{
a(u+∆u) = a(u) + a′(u)∆u+ o(∆u2),
y(u+∆u) = y(u)− κg(u)α0(u)∆u+ o(∆u2),

and (3.15), from (3.16) we have

(3.18) −κg(u){Z − a(u)} · α0(u)− a′(u) · y(u) + o(∆u) = 0.

Therefore we get (3.13).
For the developable condition of the ruled surface Y2(u, v), we have

{a(u)− κ−1
g (u)[a′(u) · y(u)]α0(u)}′ · x(u)× x′(u)

= [a− κ−1
g (a′ · y)α0]

′ · x× α0

= − [a− κ−1
g (a′ · y)α0]

′ · y
= − [(a′ · y)− (a′ · y)]
= 0.

Therefore Y2(u, v) is always a developable ruled surface. □
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The striction line of Y2(u, v) is

A2(u) = a(u)− κ−1
g (u)ψ(u)α0(u)(3.19)

− {a′(u) · α0(u)− [κ−1
g (u)ψ(u)]′}x(u)

= a(u)− κ−1
g (u)ψ(u)α0(u)

− {ξ(u)− [κ−1
g (u)ψ(u)]′}x(u).

By a direct calculation we have

(3.20) A′
2(u) = η(u)x(u) + κ−1

g (u)ψ(u)x(u)− {ξ(u)− [κ−1
g (u)ψ(u)]′}′x(u).

Proposition 3.3. Associated intersection ruled surface of π3(u) can be written
as

Y3(u, v) = a(u) +

a′(u) · α0(u)√
1 + κ2g(u)

−x(u) + κg(u)y(u)√
1 + κ2g(u)

+ vΩ0(u)(3.21)

= a(u) +

[
ξ(u)

1 + κ2g(u)

]
[−x(u) + κg(u)y(u)] + vΩ0(u)

and is always developable, where Ω =
√

1 + κ2gΩ0 = κg(u)x(u) + y(u).

Proof. The direction of the ruling l3(u) of Y3(u, v) is

lim
∆u→0

α0(u0 +∆u)× α0(u0)

|α0(u0 +∆u)× α0(u0)|
(3.22)

= lim
∆u→0

[α0(u0 +∆u)− α0(u0)]× α0(u0)

|[α0(u0 +∆u)− α0(u0)]× α0(u0)|

=
[−x(u0) + κg(u0)y(u0)]× α0(u0)

|[−x(u0) + κg(u0)y(u0)]× α0(u0)|

=
κg(u0)x(u0) + y(u0)√

1 + κ2g(u0)

= Ω0(u0).

Let Z be the point on the intersection line l3(u + ∆u) of two planes π3(u)
and π3(u+∆u). Then

{Z − a(u)} · α0(u) = 0,(3.23)

{Z − a(u+∆u)} · α0(u+∆u) = 0.(3.24)

Using

(3.25)

{
a(u+∆u) = a(u) + a′(u)∆u+ o(∆u2),
α0(u+∆u) = α0(u) + [−x(u) + κg(u)y(u)]∆u+ o(∆u2),

and (3.23), from (3.24) we have

(3.26) {Z − a(u)} · [−x(u) + κg(u)y(u)]− a′(u) · α0(u) + o(∆u) = 0.
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Therefore we get (3.21).
For the developable condition of the ruled surface Y3(u, v), we have{

a(u) +
a′(u) · α0(u)

1 + κ2g(u)
[−x(u) + κg(u)y(u)]

}′

· Ω0(u)× Ω′
0(u)

=− κ′g(1 + κ2g)
−1

{
a(u) +

a′(u) · α0(u)

1 + κ2g(u)
[−x(u) + κg(u)y(u)]

}′

· α0

=− κ′g(1 + κ2g)
−1[(a′ · α0)− (a′ · α0)]

= 0.

Therefore Y3(u, v) is always a developable ruled surface. □

Since

Ω′
0 = κ′g(1 + κ2g)

− 3
2 (x− κgy).

The striction line of Y3(u, v) is

A3(u) = a(u) +

[
ξ(u)

1 + κ2g(u)

]
[−x(u) + κg(u)y(u)](3.27)

− [κ′g(u)]
−1

[
1 + κ2g(u)

] 1
2

{
η(u)−

[
1 + κg(u)

2
] [ ξ(u)

1 + κ2g(u)

]′
−κg(u)ψ(u)− κg(u)κ

′
g(u)

[
ξ(u)

1 + κ2g(u)

]}
Ω0(u).

By a direct calculation we have

A′
3(u) =

[
1 + κ2g(u)

]− 1
2

{
ψ(u) + η(u)κg(u) + κ′g(u)

[
ξ(u)

1 + κ2g(u)

]}
(3.28)

× Ω0(u)− F ′(u)Ω0(u),

where

F (u) = [κ′g(u)]
−1

[
1 + κ2g(u)

] 1
2 ×{

η(u)−
[
1 + κg(u)

2
] [ ξ(u)

1 + κ2g(u)

]′
(3.29)

−κg(u)ψ(u)− κg(u)κ
′
g(u)

[
ξ(u)

1 + κ2g(u)

]}
.

Proposition 3.4. Let distu0(li, lj) = dist(li(u0), lj(u0)). Denote the signed
distance of the rolling lines from li(u0) to lj(u0), i ̸= j, i, j = 1, 2, 3. Then

distu0(l1, l2) = η(u0) +
ψ(u0)

κg(u0)
,(3.30)

distu0(l2, l3) =
ψ(u0)

κg(u0)
√
1 + κ2g(u0)

,(3.31)
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distu0
(l3, l1) =

κg(u0)η(u0)√
1 + κ2g(u0)

.(3.32)

Proposition 3.5. The rolling lines l1(u) and l2(u) are always perpendicular.
The intersection angle of rolling lines l1(u) and l3(u) is

(3.33) angleu(l1, l3) = angle(l1(u), l3(u)) = arccos

 1√
1 + κ2g(u)


and the intersection angle of rolling lines l2(u) and l3(u) is

(3.34) angleu(l2, l3) = angle(l2(u), l3(u)) = arccos

 κg(u)√
1 + κ2g(u)

 .

4. Surfaces foliated by circles.

In this section we consider the surfaces foliated by circles in Euclidean 3-
space E3. We denote the regular unit spherical curve with arc length parameter
u on S2 ⊂ E3 by x(u) and the regular parameter surface with parameters u
and v in E3 by X(u, v). We use the notions and conclusions as in above section
for the spherical Frenet moving frame {α0(u), x(u), y(u)} of the spherical curve
x(u).

Definition 4.1. If the surfaceX(u, v) is foliated by circles in Euclidean 3-space
E3, denote the center curve of the circles by a(u), the unit normal vector field
of the planes that the circles lie in by x(u) and the spherical Frenet moving
frame of x(u) by {α0(u), x(u), y(u)}. Then X(u, v) can be written as

(4.1) X(u, v) = a(u) + ρ(u)[(cos v)α0(u) + (sin v)y(u)].

This expression is called standard equation of the surfaces foliated by circles
in Euclidean 3-space. The surface foliated by circles is simply called circled
surface in Euclidean 3-space E3.

Remark 4.1. For the unit vector field x(u), it is usually considered as a spherical
curve. In a very special case, if x(u) is a constant vector, then we know that the
circled surface X(u, v) is generated by parallel circles. Especially if X(u, v) is
rotational surface, the curve a(u) is a straight line. In the case of that x(u) is a
constant vector, X(u, v) is called parallel circled surface and can be written as
(4.1) with α0 and y are constant vectors. Therefore in the following we always
assume that x(u) is not a constant vector. That means we always assume that
the circled surface X(u, v) is not generated by parallel circles in this paper.

From the definition and standard equation (4.1) of the circled surfaceX(u, v),
we know that the function ρ(u) is the radius of the circles which generate the
surface. Obviously ρ(u) is an invariant of X(u, v). In the following we study
another invariants of the circled surface X(u, v).
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Denote the unit normal vector field of X(u, v) by

N = N(u, v) =
Xu ×Xv

|Xu ×Xv|
,

and also put

a′(u) = [a′(u) · α0(u)]α0(u) + [a′(u) · x(u)]x(u) + [a′(u) · y(u)]y(u)(4.2)

= ξ(u)α0(u) + η(u)x(u) + ψ(u)y(u).

Then we have

(4.3)



Xu = a′ + ρ′[(cos v)α0 + (sin v)y] + ρ[(cos v)α′
0 + (sin v)y′]

= a′ + [ρ′ cos v − κgρ sin v]α0 − ρ(cos v)x
+[ρ′ sin v + κgρ cos v]y

= (a′α0 + ρ′ cos v − κgρ sin v)α0 + (a′x− ρ cos v)x
+(a′y + ρ′ sin v + κgρ cos v)y

= (ξ + ρ′ cos v − κgρ sin v)α0 + (η − ρ cos v)x
+(ψ + ρ′ sin v + κgρ cos v)y,

Xv = ρ[−(sin v)α0 + (cos v)y],
DN = ρ cos v(a′x− ρ cos v)α0 − ρ[(a′y) sin v + (a′α0) cos v + ρ′]x

+ρ sin v(a′x− ρ cos v)y
= ρ(a′x− ρ cos v)(α0 cos v + y sin v)
−ρ[(a′y) sin v + (a′α0) cos v + ρ′]x

= ρ(η − ρ cos v)(α0 cos v + y sin v)− ρ(ψ sin v + ξ cos v + ρ′)x,

where

D = D(u, v) = |Xu ×Xv|(4.4)

= ρ
√
(a′x− ρ cos v)2 + [(a′y) sin v + (a′α0) cos v + ρ′]2

= ρ
√
(η − ρ cos v)2 + (ψ sin v + ξ cos v + ρ′)2 > 0.

(4.5) N(u, v) =
(η − ρ cos v)(α0 cos v + y sin v)− (ψ sin v + ξ cos v + ρ′)x√

(η − ρ cos v)2 + (ψ sin v + ξ cos v + ρ′)2
.

Then the first fundamental form of X(u, v) is

(4.6)



I = Edu2 + 2Fdudv +Gdv2,
E = (ξ + ρ′ cos v − κgρ sin v)

2 + (η − ρ cos v)2

+(ψ + ρ′ sin v + κgρ cos v)
2,

F = −ρ sin v(ξ + ρ′ cos v − κgρ sin v)
+ρ cos v(ψ + ρ′ sin v + κgρ cos v)

= ρ2κg − ρξ sin v + ρψ cos v,
G = ρ2.

At first we consider the rotation of the points along the circle in the plane.
We give the following definition.
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Definition 4.2. Let X(u, v) be the surface foliated by circles in E3 and x(u)
the unit normal vector field of the planes that the circles lie in. The rotational
density function of the circled surface X(u, v) is defined by the rotational angle
density of the circles

(4.7) φ(u) = −[x′(u)× x(u)]′ · x′(u) = −y′(u) · α0(u) = κg(u).

Remark 4.2. The rotational angle density function of the unit vector field is
defined in [12, Definition 2.2]. The function φ(u) characterizes the state of
points on the circles since the points on the circles can rotate with respect to
the axis x(u).

Now we consider the curves which intersect all circles on the circled surface
X(u, v).

Definition 4.3. The striction point S−(u0) of the circled surface X(u, v) at
point u0 in E3 is defined by

S−(u0)

(4.8)

= lim
∆u→0

{
X(u0 +∆u, vmin)

∣∣∣∣ min
v1,v2∈[0,2π]

dist(X(u0 +∆u, v1), X(u0, v2))

}
.

The striction point S+(u0) of X(u, v) at u0 is defined by
(4.9)

S+(u0) = lim
∆u→0

{
X(u0 +∆u, v)

∣∣∣∣ max
v∈[0,2π]

dist(X(u0 +∆u, v), X(u0, v))

}
,

where dist denotes the distance of two points X(u0+∆u, v1) and X(u+∆u, v2),
that is,

dist(X(u0 +∆u, v1), X(u0, v2)) = |X(u0 +∆u, v1)−X(u+∆u, v2)|.

Proposition 4.1. The two striction curves (maximal and minimal) of the
circled surface X(u, v) are

(4.10) S±(u) = a(u)± ρ(u)α0(u) = a(u) + ερ(u)α0(u) = Sε(u).

Proof. By Proposition 3.1 we know that the striction curves of X(u, v) can
be written as (4.10). In this case, by a parameter transformation s → −s if
necessary, we assume that the direction of the vector α0(u) is always pointing
to the anti-direction of the intersection line l1(u) (cf. Definition 3.1) of two
planes. □

Remark 4.3. From (4.5), if ρ is constant, we know that

lim
v→ −π

2

N(u, v) = − lim
v→π

2

N(u, v).

Then we can also define the striction points by

S−(u0) = lim
v→0

X(u0, v)
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and
S+(u0) = lim

v→π
X(u0, v).

Therefore we have also

S±(u) = a(u)± ρ(u)α0(u).

Now we consider the motion of the planes that the circles lie in. This can
be characterized by the changes of the centers of the circles.

Definition 4.4. For the circled surfaceX(u, v), at the point u0, (signed) trans-
lation density of circle center along the direction of the intersection l1(u0) of
two planes π1(u0) and π1(u0 +∆u) is defined by

lim
∆u→0

a(u0 +∆u)− a(u0)

∆u
· x(u0 +∆u)× x(u0)

|x(u0 +∆u)× x(u0)|
(4.11)

= a′(u0) · y(u0) = ψ(u0).

The function ψ(u) is called first translation density function (or first kind of
translation density function).

Definition 4.5. For the circled surfaceX(u, v), at the point u0, (signed) trans-
lation density of circle center along the direction of the intersection l2(u0) of
two planes π2(u0) and π2(u0 +∆u) is defined by

lim
∆u→0

a(u0 +∆u)− a(u0)

∆u
· y(u0 +∆u)× y(u0)

|y(u0 +∆u)× y(u0)|
(4.12)

=± a′(u0) · x(u0) = ±η(u0).
The function η(u) is called second translation density function (or second kind
of translation density function).

Definition 4.6. For the circled surfaceX(u, v), at the point u0, (signed) trans-
lation density of circle center along the common perpendicular direction of l1
and l2 i.e. α0(u) direction is defined by

lim
∆u→0

a(u0 +∆u)− a(u0)

∆u
· x(u0 +∆u)× [x(u0 +∆u)× x(u0)]

|x(u0 +∆u)× [x(u0 +∆u)× x(u0)]|
(4.13)

= a′(u0) · α0(u0) = ξ(u0).

The function ξ(u) is called third translation density function (or third kind of
translation density function).

Definition 4.7. Associated ruled surfaces of the circled surface X(u, v) are
defined by (3.6), (3.13) and (3.21). Associated ruled surface Y1(u, v) defined
by (3.6) is called axis ruled surface of X(u, v). Associated ruled surface Y2(u, v)
defined by (3.13) is called position ruled surface of X(u, v). Associated ruled
surface Y3(u, v) defined by (3.21) is called Darboux ruled surface of X(u, v).

Proposition 4.2. If the center curve a(u) of X(u, v) is the striction line of
the axis ruled surface Y1(u, v), then we have a′ · α0 = ξ = a′ · x = η ≡ 0.
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Proof. By (3.11) we can easily get the conclusion. □

Proposition 4.3. If the center curve a(u) of X(u, v) is the striction line of
the position ruled surface Y2(u, v), then we have a′ · α0 = ξ = a′ · y = ψ ≡ 0.

Proof. By (3.19) we can get the conclusion. □

Proposition 4.4. If the center curve a(u) of X(u, v) is the striction line of
the Darboux ruled surface Y3(u, v), then we have a′ · α0 = ξ = a′ · x = η =
a′ · y = ψ ≡ 0. In this case a(u) is a constant vector, i.e. the center curve a(u)
of X(u, v) is a point.

Proof. By (3.27) we can get the conclusion. □

5. Some special surfaces foliated by circles

In this section, as the examples, we consider three kinds of special circled
surfaces in Euclidean 3-space E3. Usually they have the explicitly geometric
characteristics.

5.1. Osculating circle surfaces

At first we consider the special circled surface which is generated by the
circles they lie in the osculating planes of a curve in E3.

Definition 5.1. If the center curve a(u) of the circled surface X(u, v) is the
striction line of its axis ruled surface Y1(u, v), then the surface X(u, v) is called
osculating circle surface in Euclidean 3-space E3.

For the osculating circle surfaces, from Definition 5.1 and Proposition 3.1
we know that

a′(u) = ψ(u)y(u).(5.1)

Therefore we have

Proposition 5.1. The circled surface X(u, v) is an osculating circle surface if
and only if its center curve a(u) is tangent to the planes along the intersection
direction that the circles lie in.

Remark 5.1. From Equation (5.1) and Proposition 5.1 we know that the plane
that the circle lies in is the osculating plane of the center curve at the corre-
sponding point for the osculating circle surface.

We denote the arc length parameter of the curve a(u) by s̄, Frenet frame
of a(u) by {ᾱ, β̄, γ̄}, the curvature and torsion of a(u) by κ̄ and τ̄ . Then from
(5.1) we have

(5.2)

{
ᾱ(u) = εy(u),
ds̄

du
= εψ(u), ε = ±1.
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Without loss of generality we may assume that ε = +1. From ᾱ(u) = y(u) and
also putting β̄(u) = α0(u) we get

(5.3)

{
β̄(u) = α0(u),

κ̄(u)ψ(u) = −κg(u).

From β̄(u) = α0(u), by a direct calculation we have

(5.4)

{
γ̄(u) = x(u),

τ̄(u)ψ(u) = −1.

Then we have

(5.5)

 ᾱ(u) = y(u),
β̄(u) = α0(u),
γ̄(u) = x(u),

and

(5.6)


τ̄(u)

κ̄(u)
=

1

κg(u)
,

ds̄

du
= ψ(u) = − 1

τ̄(u)
= −κg(u)

κ̄(u)
.

From (4.10) and (5.5) we know that the striction curves of the surfaceX(u, v)
are

(5.7) Sε = a(u) + ερ(u)α0(u) = a(u) + ερ(u)β̄(u).

If ερ(u)κ̄(u) = 1, the striction curve Sε is the curvature center curve of a(u).

Theorem 5.1. If the circled surface

X(u, v) = a(u) + ρ(u)[(cos v)α0(u) + (sin v)y(u)]

is an osculating circle surface, then the ruled surface

(5.8) X0(u, v) = a(u) + vx(u)

is non pitched and X0(u, v) is the binormal ruled surface of the curve a(u).

Proof. If X(u, v) is an osculating circle surface, from (5.5) we know that x(u)
is the binormal of the curve a(u). Therefore X0(u, v) is the binormal ruled
surface of the curve a(u) and by [6], Definition 5.1 and Theorem 5.1, we know
that ruled surface X0(u, v) is non pitched. □

Theorem 5.2. If the circled surface X(u, v) is an osculating circle surface,
then the center curve a(u) is the involute of the striction line A2(u) of position
ruled surface Y2(u, v) of X(u, v).

Proof. If X(u, v) is an osculating circle surface, from (3.19), (5.5) and (5.6),
we have

A2(u) = a(u)− κ−1
g (u)ψ(u)α0(u)− {ξ(u)− [κ−1

g (u)ψ(u)]′}x(u)(5.9)

= a(u)− κ−1
g (u)ψ(u)α0(u) + [κ−1

g (u)ψ(u)]′x(u)
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= a(u) + R̄(u)β̄(u)− [R̄(u)]′γ̄(u),

where R̄(u) = [κ̄(u)]−1 is the curvature radius. By (3.20) (or a direct calcula-
tion) we know that a(u) is the involute of A2(u) and A2(u) is the evolute of
a(u). □

5.2. Normal circle surfaces

Now we consider another kind of special circled surfaces. Such a surface is
generated by the circles they lie in the normal planes of a curve in E3.

Definition 5.2. If the center curve a(u) of the circled surface X(u, v) is the
striction line of its position ruled surface Y2(u, v), then the surface X(u, v) is
called normal circle surface in Euclidean 3-space E3.

For the normal circle surfaces, from Definition 5.2 and Proposition 3.2, we
know that

a′(u) = η(u)x(u).(5.10)

Therefore we have

Proposition 5.2. The circled surface X(u, v) is a normal circle surface if and
only if its center curve a(u) is perpendicular to the planes that the circles lie
in.

Remark 5.2. From Proposition 5.2 we know that the plane that the circle lies
in is the normal plane of the center curve at the corresponding point for the
normal circle surface.

Remark 5.3. The normal circle surfaces defined in Definition 5.2 are called
canal surface by some authors.

We denote the arc length parameter of a(u) by s̄, Frenet frame of a(u) by
{ᾱ, β̄, γ̄}, the curvature and torsion of a(u) by κ̄ and τ̄ . Then from (5.10) we
have

(5.11)

{
ᾱ(u) = εx(u),
ds̄

du
= εη(u), ε = ±1.

We also put ε = +1. From ᾱ(u) = x(u), putting β̄(u) = α0(u) we have

(5.12)

{
β̄(u) = α0(u),

κ̄(u)η(u) = 1.

From β̄(u) = α0(u), by a direct calculation we have

(5.13)

{
γ̄(u) = −y(u),
τ̄(u) = −κ̄(u)κg(u).

Then we have

(5.14)

 ᾱ(u) = x(u),
β̄(u) = α0(u),
γ̄(u) = −y(u),
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and

(5.15)


τ̄(u)

κ̄(u)
= −κg(u),

ds̄

du
= η(u) =

1

κ̄(u)
= −κg(u)

τ̄(u)
.

From (4.10) and (5.14) we know that the striction curves of the surface
X(u, v) are

(5.16) Sε = a(u) + ερ(u)α0(u) = a(u) + ερ(u)β̄(u).

If ερ(u)κ̄(u) = 1, the striction curve Sε is the curvature center curve of a(u).

Theorem 5.3. If the circled surface

X(u, v) = a(u) + ρ(u)[(cos v)α0(u) + (sin v)y(u)]

is a normal circle surface, then the ruled surface

(5.17) Y0(u, v) = a(u) + vy(u)

is non pitched and Y0(u, v) is the binormal ruled surface of the curve a(u).

Proof. If X(u, v) is a normal circle surface, from (5.14) we know that y(u) is
the binormal of the curve a(u). Therefore Y0(u, v) is the binormal ruled surface
of the curve a(u) and by [6], Definition 5.1 and Theorem 5.1, we know that
ruled surface Y0(u, v) is non pitched. □

Theorem 5.4. If the circled surface X(u, v) is a normal circle surface, then
the center curve a(u) is the involute of the striction line A1(u) of axis ruled
surface Y1(u, v) of X(u, v).

Proof. If X(u, v) is a normal circle surface, from (3.11) and (5.14), (5.15) we
have

A1(u) = a(u) + η(u)α0(u) +

(
ξ(u) + η′(u)

κg(u)

)
y(u)(5.18)

= a(u) + η(u)α0(u) + [κ−1
g (u)η′(u)]y(u)

= a(u) + R̄(u)β̄(u)− [κ−1
g (u)R̄′(u)]γ̄(u).

Where R̄(u) = [κ̄(u)]−1 is the curvature radius. By (3.12) (or directly calcu-
lation) we know that a(u) is the involute of A1(u) and A1(u) is the evolute of
a(u). □

5.3. Curvature circle surfaces

In this subsection we consider the circled surface generated by the curvature
circles of a space curve in Euclidean 3-space E3. It is well known that the
curvature circle of any regular space curve r(s) = r(u) at point s0 = s(u0) in
E3 can be written as

X(u0, v) = r(u0) +R(u0)β(u0) +R(u0){α(u0) sin v + β(u0) cos v},(5.19)
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where R(u) = κ−1(u) is the curvature radius of r(u); s is the arc length pa-
rameter of r(u). We denote the Frenet frame field along r(s) by {α(s), β(s),
γ(s)} and the curvature function and torsion function of r(s) by κ(s) and τ(s).

From (5.19), we know that γ(u) ∥ x(u), u is the arc length parameter of
x(u). Then by derivation and Frenet formula we get β(u) ∥ α0(u). Therefore
we have α(u) = β(u)× γ(u) ∥ y(u). Putting

(5.20)

 α(u) = y(u),
β(u) = α0(u),
γ(u) = x(u),

then (5.19) can be written as

X(u0, v) = r(u0) +R(u0)α0(u0) +R(u0){y(u0) sin v + α0(u0) cos v}.(5.21)

From Proposition 4.1, we know that the striction curves of this kind of circled
surface X(u, v) are

S±(u) = r(u) +R(u)α0(u)∓R(u)α0(u).

Remark 5.4. From the geometric meaning of the principal normal β̄, we know
that the direction of α0 here is different as in Proposition 4.1.

By (5.20) we have

(5.22)


κ(u)β(u)

ds

du
= −κg(u)α0(u),

−τ(u)β(u) ds
du

= α0(u).

Then we get

(5.23)


τ(u)

κ(u)
=

1

κg(u)
,

ds

du
= − 1

τ(u)
= −κg(u)

κ(u)
.

Theorem 5.5. The circled surface X(u, v) is a curvature circles surface of
a space curve r(s) if and only if the invariants ξ(u), η(u), ψ(u), κg(u), ρ(u) of
X(u, v) and the invariants s, κ(s), τ(s) of r(s) satisfy

(5.24)



ξ(u) = Ṙ(u)
ds

du
= R ′(u) =

dR(u)

du
,

η(u) = τ(u)R(u)
ds

du
= −R(u),

ψ(u) = 0,
ρ(u) = R(u),

ds

du
= − 1

τ(u)
= −κg(u)

κ(u)
.
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Proof. If X(u, v) is the curvature circles surface of r(s), then

a′(u) =
d

ds
[r(s) +R(s)β(s)]

ds

du
= [Ṙ(s)β(s) +R(s)τ(s)γ(s)]

ds

du
.

By (4.2), (5.20) and (5.23) we have (5.24).
On the other hand, from (5.24) we have

a(u) =

∫
[R ′(u)α0(u)−R(u)x(u)]du.

Put
r(s) = r(u) = a(u)−R(u)α0(u),

then

α(u)

= {R ′(u)α0(u)−R(u)x(u)−R ′(u)α0(u)−R(u)[−x(u) + κg(u)y(u)]}
du

ds

=−R(u)κg(u)y(u)
du

ds
= y(u).

And

κ(u)β(u) = −κg(u)α0(u)
du

ds
yields

β(u) = α0(u).

Therefore
γ(u) = α(u)× β(u) = y(u)× α0(u) = x(u).

The circled surface

X(u, v) = a(u) + ρ(u)[α0(u) cos v + y(u) sin v]

=

∫
[R ′(u)α0(u)−R(u)x(u)]du+R(u)[α0(u) cos v + y(u) sin v]

is the curvature circles surface∫
[R ′(u)α0(u)−R(u)x(u)]du+R(u)[β(u) cos v + α(u) sin v]

of the curve
r(s) = a(u)−R(u)β(u) = a(u)−R(u)α0(u). □
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