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Abstract. In this note, we aim to correct some of the results presented
in [1]. Namely, the statements of Proposition 2.1, Corollary 2.2, Corollary

2.3, Theorem 2.4 and Theorem 2.6, concerning only the monoids OPn and

POPn, have to exclude transformations of rank two. All other results of
[1], as well as those mentioned above but for the monoids ORn and

PORn, do not require correction.

We begin this note by briefly recalling some notions and by establishing some
notations. Let n be a positive integer and let Ωn = {1 < · · · < n}. Denote by
PTn the monoid (under composition) of all partial transformations on Ωn, by
Tn the submonoid of PTn of all full transformations on Ωn and by In the inverse
submonoid of PTn of all partial permutations on Ωn. Let s = (a1, . . . , at) be
a sequence of t (t ⩾ 0) elements from the chain Ωn. We say that s is cyclic
[anti-cyclic] if there exists no more than one index i ∈ {1, . . . , t} such that
ai > ai+1 [ai < ai+1], where at+1 denotes a1. Given a partial transformation
α ∈ PTn such that Dom(α) = {a1 < · · · < at}, with t ⩾ 0, we say that
α is preserves orientation [reverses orientation] if the sequence of its images
(a1α, . . . , atα) is cyclic [anti-cyclic]. We denote by POPn the submonoid of
PTn of all partial transformations that preserve orientation and by PORn

the submonoid of PTn of all partial transformations that preserve or reverse
orientation. Let OPn = POPn∩Tn, ORn = PORn∩Tn, POPIn = POPn∩In
and PORIn = PORn ∩ In.

Concerning the monoids OPn and POPn, Corollary 2.2, Corollary 2.3, The-
orem 2.4 and Theorem 2.6 of [1] depend on Proposition 2.1(1) of [1], which is,
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although in other words, a transcription of Theorem 3 of [2]. This last result,
in turn, rewrites Proposition 1.1 of [3], which was presented without proof.

Although the statement of Theorem 3 of [2] does not mention any restriction
on the rank of the transformation α ∈ Tn taken, in the proof the authors
considered that α has rank greater than two. In fact, there are transformations
of rank two which do not preserve orientation and, simultaneously, which satisfy
the condition (for OPn) of Theorem 3 of [2]. For example, α = ( 1 2 3 4

1 2 1 2 ), with
n = 4. On the other hand, clearly all transformations of rank one preserve
orientation, so Theorem 3 of [2] is only valid for transformations of rank other
than two. We should note, however, that the statement of Proposition 1.1 of
[3] does not lack the same restriction.

As a consequence of the foregoing, for the monoids OPn and POPn, the
statements of the mentioned results of [1] must comply with the same restriction
as Theorem 3 of [2], i.e. they should be stated as follows.

Proposition 2.1. (1) Let α ∈ Tn be such that | Im(α)| ≠ 2. Then, α ∈ OPn

if and only if, for every triple (a1, a2, a3) of elements of Ωn, (a1, a2, a3) and
(a1α, a2α, a3α) are both cyclic or both anti-cyclic.

Corollary 2.2. Let α ∈ Tn be such that | Im(α)| ≠ 2. Then, α ∈ OPn if and
only if, for every cyclic triple (a1, a2, a3) of elements of Ωn, (a1α, a2α, a3α) is
also cyclic.

Corollary 2.3. Let α ∈ Tn be such that | Im(α)| ≠ 2. Then, α ∈ OPn if and
only if, for every non-decreasing triple (a1, a2, a3) of elements of Ωn, the triple
(a1α, a2α, a3α) is cyclic.

Recall that the width of a partial transformation is the number of elements
in its domain.

Theorem 2.4. Let α ∈ Tn be such that | Im(α)| ̸= 2. Then, α ∈ OPn if and
only if every restriction of α of width three belongs to POPn.

Theorem 2.6. Let α ∈ PTn be such that | Im(α)| ≠ 2. Then, α ∈ POPn if
and only if every restriction of α of width three belongs to POPn.

Now, let α ∈ PTn be such that | Im(α)| = 2. Suppose that Dom(α) = {i1 <
i2 < · · · < ik} for some 2 ⩽ k ⩽ n. Then, it is clear that α ∈ POPn if and only
if α admits as kernel classes {ir, ir+1, . . . , is} and {i1, . . . , ir−1, is+1, . . . , ik} for
some 1 ⩽ r ⩽ s ⩽ k (and s− r + 1 < k).

We finish this note by observing that Theorem 2.7 of [1] does not require
the same restriction (even for POPIn), since all partial permuations of rank
two preserve orientation.
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