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ON DIFFERENTIAL IDENTITIES INVOLVING

PARTITIONING IDEALS OF SEMIRINGS

Liaqat Ali, Muhammad Aslam, Ghulam Farid, and Tariq Mahmood

Abstract. In this article, we study a certain class of partitioning ideals

known as Q-ideals, in semirings. Main objective is to investigate differen-
tial identities linking a semiring S to its prime Q-ideal IQ, which ensure

the commutativity and other features of S/IQ.

1. Introduction and preliminaries

Semirings play a key role in the theory of automata [16], optimization theory
[10], and theoretical computer science [11]. Idempotent analysis [15, 18] based
on additive inverse semirings was proposed by a group of Russian mathemati-
cians, and it has fascinating applications in quantum physics. MA-semirings
due to Javed [13], are a class of semirings which properly contains the classes
of distributive lattices and rings. In general, the notion of commutators satis-
fying Jacobian identities that is not sustainable in semirings, is a peculiarity
of MA-semirings. The class of MA-semirings has a significant potential to ac-
commodate the study of derivations satisfying different identities on semirings
for probing commuting conditions. Now this class is well known and several
research articles have been published (see [1, 2, 20]). Ideal theory has a wide
variety of applications and intriguing features, and it has become a valuable
concept in algebra and ring theory. For the various types of algebraic struc-
tures, various ideals such as Quasi-ideals [12], k-ideals [21], Q-ideals [7,8], Jor-
dan ideals [3], and Lie ideals [5] have been described and studied. Derivations
satisfying certain identities on rings [6,14,19], as well as on ideals [3–5], leading
to the commutativity of rings have become a burgeoning field of study and al-
gebraists have made a significant contribution to it, and some of these problems
have been generalized to semirings [1, 2, 13].

We now state some definitions and basic notions. A nonempty set S with
two binary operations addition ‘+’ and multiplication ‘·’ is said to be a semiring
if the following axioms are satisfied: (i) (S,+) is a commutative monoid with
identity element ‘0’ (ii) (S, ·) is a semigroup such that u0 = 0u = 0 for all u ∈ S
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(iii) u(v+w) = uv+uw, (v+w)u = vu+wu for all u, v, w ∈ S. A semiring S is
said to be 2-torsion free if 2u = 0 implies u = 0. A semiring S is said to be an
additive inverse semiring if for each u ∈ S there is a u′ ∈ S (called the pseudo
inverse of u) such that u+u′ +u = u and u′ +u+u′ = u′. An additive inverse
semiring S is said to be an MA-semiring if it satisfies u + u′ ∈ Z(S) for all
u ∈ S, where Z(S) is the center of S. In fact, every ring is an MA-semiring but
converse may not hold in general. In the following we present some examples
of MA-semirings which are not rings.

Example 1.1. LetR0 be the set of all non-negative real numbers and a, b ∈ R0.
Define addition ⊕ and multiplication ⊙ by a ⊕ b = max{a, b} and a ⊙ b =
min{a, b}. Then (R0,⊕,⊙) forms an MA-semiring which is not a ring.

Example 1.2 ([22]). Let (R,+, ·) be a ring and I(R) be the collection of all
ideals of R. Consider the set S = R× I(R) and let u = (r1, I), v = (r2, J) ∈ S.
Define addition ⊕ and multiplication ⊙ by u⊕ v = (r1+ r2, I +J) and u⊙ v =
(r1r2, IJ). Then (S,⊕,⊙) forms an MA-semiring which is not a ring.

Example 1.3. Let Z be the set of integers, Z+
0 be the set of all non-negative

integers and R = Z×Z+
0 . Define addition ⊕ and multiplication ⊙ by (u1, v1)⊕

(u2, v2) = (u1 + u2, v1 ∨ v2) and (u1, v1) ⊙ (u2, v2) = (u1 · u2, v1 · v2), where
v1 ∨ v2 = max{v1, v2}. Then the triplet (S,⊕,⊙) forms an MA-semiring which
is not a ring.

An ideal I of a semiring S is called prime if for a, b ∈ S, aSb ⊆ I implies
either a ∈ I or b ∈ I. An ideal I of a semiring S is said to be a Q-ideal if
there exists a partitioning subset Q of S such that S =

⋃
{q + I : q ∈ Q}

and if q1, q2 ∈ Q, then (q1 + I)
⋂
(q2 + I) ̸= ϕ if and only if q1 = q2 (see

[8]). An ideal I of a semiring S is said to be a k-ideal if a + b ∈ I and
b ∈ I, then a ∈ I. In fact every Q-ideal is a k-ideal but the converse may
not be true in general; for details, see [7]. Throughout the sequel by IQ,
we mean a prime Q-ideal unless mentioned otherwise. An additive mapping
ϱ : S −→ S is a derivation if ϱ(us) = ϱ(u)s+ uϱ(s). The commutator and the
anti-commutator(or the Jordan product) of u, s in S are respectively defined
as [u, s] = us + s′u and u ◦ s = us + su. Now we state some identities in
MA-semirings which will be frequently used in the sequel. For all u, s, w ∈ S,
we have [u, us] = u[u, s], [us,w] = u[s, w] + [u,w]s, [u, sw] = [u, s]w+ s[u,w],
[u, s] + [s, u] = s(u+u′) = u(s+ s′), (us)′ = u′s = us′, [u, s]′ = [u, s′] = [u′, s],
u ◦ (s+w) = u ◦ s+ u ◦w, u+ s = 0 implies u = s′, however the converse may
not be true in general (see [13,20] for ready reference).

One can find MA-semirings, in which well known properties of rings are not
valid in general. For example if S is an MA-semiring and s, t ∈ S, then st = ts
does not admit [s, t] = 0; [s, s] ̸= 0 if s ̸= 0; if s ∈ Z(S) and ϱ is derivation of
S, then ϱ(s) may not belong to Z(S).

The following results are indeed useful to establish the main results of this
paper.
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Proposition 1.4. The pseudo inverse of any element in an additive inverse
semiring is unique.

We often use the following Proposition in the sequel without mentioning it.

Proposition 1.5. Let IQ be a Q-ideal of an additive inverse semiring S and
t ∈ S. Then t ∈ IQ if and only if t+ IQ = IQ.

Quotient MA-semirings can be defined canonically as the notion of quotient
rings. Following lemma shows that for an MA-semiring S and its prime Q-
ideal IQ, the set S/IQ = {t + IQ : t ∈ S} forms an MA-semiring known as a
quotient MA-semiring.

Lemma 1.6 ([17]). Let (S,+, ·) be an MA-semiring and IQ be a prime Q-ideal
of S. Then the set S/IQ = {t+ IQ : t ∈ S} forms an MA-semiring with respect
to the addition ⊕ and multiplication ⊙ defined by

(i) (t+ IQ)⊕ (u+ IQ) = t+ u+ IQ
(ii) (t+ IQ)⊙ (u+ IQ) = t · u+ IQ

for all t, u ∈ S.

Following is an important result which is useful in proving the main results.

Lemma 1.7 ([17]). Let IQ be a prime Q-ideal of an MA-semiring S. If

(i) [t, u] ∈ IQ or
(ii) t ◦ u ∈ IQ

for all t, u ∈ S, then S/IQ is a commutative MA-semiring.

Proposition 1.8. Let S be an additive inverse semiring and IQ be its prime
Q-ideal. Then S/IQ is prime.

Proof. Let t+ IQ, u+ IQ ∈ S/IQ and put

(t+ IQ)⊙ (S/IQ)⊙ (u+ IQ) = IQ.

Therefore

(t+ IQ)⊙ (s+ IQ)⊙ (u+ IQ) = IQ

for all s ∈ S. By the definition of ⊙ in S/IQ, we have

tsu+ IQ = IQ

for all s ∈ S, which further implies that tsu ∈ IQ for all s ∈ S and therefore

tSu ⊆ IQ.

By the primeness of IQ, we have either t ∈ IQ or u ∈ IQ and hence t+ IQ = IQ
or u + IQ = IQ. This shows that S/IQ is prime. However, the primeness of
S/IQ does not imply the primeness of S in general. □

Proposition 1.9. Let S be a 2-torsion free additive inverse semiring and IQ
be its prime ideal. Then S/IQ is 2-torsion free.
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Proof. As S is 2-torsion free for s ∈ S, 2s = 0 implies s = 0 (c.f. Section 1).
This means that 2s+ IQ = 2(s+ IQ) = IQ implies s+ IQ = IQ. Hence S/IQ is
2-torsion free. Observe that the 2-torsion freeness of S/IQ does not imply the
2-torsion freeness of S in general. □

Mir et al. [9] proved some results on derivations satisfying certain identities
on prime ideals of rings. The main objective of this paper is to prove these
results for prime ideals of MA-semirings and investigate differential identities
leading to the commutativity of quotient MA-semirings.

2. Main results

In the sequel, we use (t + IQ)(u + IQ) and (t + IQ) + (u + IQ) instead of
(t+ IQ)⊙ (u+ IQ) and (t+ IQ)⊕ (u+ IQ) (c.f. Lemma 1.6), respectively for
the sake of convenience.

Lemma 1 of [9] is generalized as follows.

Theorem 2.1. Let IQ be a prime Q-ideal of an MA-semiring S and ϱ1, ϱ2
be derivations of S. If ϱ1(u)u + u′ϱ2(u) ∈ IQ for all u ∈ S, then one of the
following holds

(i) (ϱ1(S) ⊆ IQ and ϱ2(S) ⊆ IQ)
(ii) S/IQ is commutative.

Proof. Suppose that for all u ∈ S

(1) ϱ1(u)u+ u′ϱ2(u) ∈ IQ.

In (1), substituting u+ s for u and using (1) again, we obtain

(2) ϱ1(u)s+ ϱ1(s)u+ u′ϱ2(s) + s′ϱ2(u) ∈ IQ.

Multiplying (2) by u from the right, we obtain

(3) ϱ1(u)su+ ϱ1(s)uu+ u′ϱ2(s)u+ s′ϱ2(u)u ∈ IQ.

In (2), substituting su for s, we get

(4) ϱ1(u)su+ ϱ1(s)uu+ sϱ1(u)u+ u′ϱ2(s)u+ u′sϱ2(u) + s′uϱ2(u) ∈ IQ.

As u = u+ u′ + u and u+ u′ ∈ Z(S), we have

ϱ1(u)su+ ϱ1(s)uu+ sϱ1(u)u+ u′ϱ2(s)u+ u′sϱ2(u) + su′ϱ2(u)

= ϱ1(u)su+ ϱ1(s)uu+ sϱ1(u)u+ u′ϱ2(s)u+ u′sϱ2(u) + s(u′ + u+ u′)ϱ2(u)

= ϱ1(u)su+ ϱ1(s)uu+ sϱ1(u)u+ u′ϱ2(s)u+ u′sϱ2(u) + su′ϱ2(u)

+ sϱ2(u)u+ sϱ2(u)u
′

= (ϱ1(u)s+ ϱ1(s)u+ u′ϱ2(s) + s′ϱ2(u))u+ sϱ1(u)u

+ u′sϱ2(u) + su′ϱ2(u) + sϱ2(u)u,

(ϱ1(u)s+ ϱ1(s)u+ u′ϱ2(s) + s′ϱ2(u))u+ sϱ1(u)u(5)

+ u′sϱ2(u) + su′ϱ2(u) + sϱ2(u)u ∈ IQ.
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As IQ is a prime Q-ideal, therefore using (3) in (5), we obtain

(6) sϱ1(u)u+ u′sϱ2(u) + su′ϱ2(u) + sϱ2(u)u ∈ IQ.

Multiplying (1) by s from the left, we obtain

(7) sϱ1(u)u+ su′ϱ2(u) ∈ IQ.

Using (7) in (6), we obtain u′sϱ2(u) + sϱ2(u)u ∈ IQ and therefore

(8) [sϱ2(u), u] ∈ IQ.

In (8), substituting sz for s, we get [szϱ2(u), u] ∈ IQ. But by the MA-semiring
identities [szϱ2(u), u] = s[zϱ2(u), u] + [s, u]zϱ2(u) and therefore s[zϱ2(u), u] +
[s, u]zϱ2(u) ∈ IQ. Using (8), we obtain [s, u]Sϱ2(u) ⊆ IQ. As IQ is prime,
therefore we have [s, u] ∈ IQ or ϱ2(u) ∈ IQ for all u, s ∈ S. Consider the sets

S1 = {u ∈ S : [s, u] ∈ IQ, for all s ∈ S}
and

S2 = {u ∈ S : ϱ2(u) ∈ IQ}.
Our claim is that S1 ⊆ S2 or S1 ⊆ S2. Suppose that u1 ∈ S1 \ S2 and
u2 ∈ S2 \ S1. We have u1 + u2 ∈ S1 + S2 ⊆ S1 ∪ S2. Therefore either
u1 + u2 ∈ S1 or u1 + u2 ∈ S2. If u1 + u2 ∈ S1, then [s, u1] + [s, u2] ∈ IQ which
further implies [s, u2] ∈ IQ and therefore u2 ∈ S1, a contradiction. On the
other hand if u1 + u2 ∈ S2, then ϱ2(u1) + ϱ2(u2) ∈ IQ, which further implies
ϱ2(u1) ∈ IQ and therefore u1 ∈ S2, a contradiction. Therefore we conclude
that either S = S1 or S2 = S and either [S, S] ⊆ IQ or ϱ2(S) ⊆ IQ. In view of
the Lemma 1.7, the assumption [S, S] ⊆ IQ implies that S/IQ is commutative.
On the other hand if ϱ2(S) ⊆ IQ, by the hypothesis, we obtain ϱ1(S) ⊆ IQ and
vice versa. □

Theorem 1 of [9] is generalized in the following result.

Theorem 2.2. Let IQ be a prime Q-ideal of an MA-semiring S and ϱ1, ϱ2 be
two derivations of S. If any one of the following statements holds:

(i) [ϱ1(u), ϱ2(s)] + [u, s]′ ∈ IQ
(ii) ϱ1(u)ϱ2(s) + [u, s]′ ∈ IQ

for all s, u ∈ S, then S/IQ is commutative.

Proof. (i) For all s, u ∈ S, we have

(9) [ϱ1(u), ϱ2(s)] + [u, s]′ ∈ IQ.

In (9), substituting sr for s and then rearranging the terms, we obtain

ϱ2(s)[ϱ1(u), r] + ([ϱ1(u), ϱ2(s)] + [u, s]′)r

+ s([ϱ1(u), ϱ2(r)] + [u, r]′) + [ϱ1(u), s]ϱ2(r) ∈ IQ.

As IQ is a prime Q-ideal, using (9) in the last identity, we obtain

(10) ϱ2(s)[ϱ1(u), r] + [ϱ1(u), s]ϱ2(r) ∈ IQ.
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In (10), taking s = ϱ1(u), we get

(11) ϱ2(ϱ1(u))[ϱ1(u), r] + [ϱ1(u), ϱ1(u)]ϱ2(r) ∈ IQ.

Using MA-semiring identities, we have

[ϱ1(u), ϱ1(u)]ϱ2(r) = 2[ϱ1(u), ϱ1(u)]ϱ2(r),

therefore (11) becomes

ϱ2(ϱ1(u))[ϱ1(u), r] + [ϱ1(u), ϱ1(u)]ϱ2(r) + [ϱ1(u), ϱ1(u)]ϱ2(r) ∈ IQ.

As IQ is a Q-ideal, using (11), we obtain [ϱ1(u), ϱ1(u)]ϱ2(r) ∈ IQ and then
again from (11), we get

(12) ϱ2(ϱ1(u))[ϱ1(u), r] ∈ IQ.

In (12), substituting sr for r, we get

ϱ2(ϱ1(u))z[ϱ1(u), r] + ϱ2(ϱ1(u))[ϱ1(u), z]r ∈ IQ.

Using (12), we get ϱ2(ϱ1(u))S[ϱ1(u), r] ⊆ IQ and by the primeness of IQ, we
obtain [ϱ1(u), r] ∈ IQ or ϱ2(ϱ1(u)) ∈ IQ. Following the same arguments as
above, we conclude that [ϱ1(S), S] ⊆ IQ or ϱ2(ϱ1(S)) ⊆ IQ. Suppose that
[ϱ1(S), S] ⊆ IQ. Then

(13) [ϱ1(u), r] ∈ IQ.

In (13), substituting ur for u, we obtain [uϱ1(r), r] + [ϱ1(u)r, r] ∈ IQ and
therefore [u, r]ϱ1(r) + u[ϱ1(r), r] + [ϱ1(u), r]r ∈ IQ. As IQ is a Q-ideal, using
(13), we get [u, r]ϱ1(r) ∈ IQ. Following the same process as above we obtain
either S/IQ is commutative or ϱ1(r) ∈ IQ. If ϱ1(r) ∈ IQ, then (9) gives
[u, s] ∈ IQ, which implies that S/IQ is commutative. Secondly suppose that

(14) ϱ2(ϱ1(z)) ∈ IQ.

In (9), replacing s by ϱ1(s) and using (14) again, we get [u, ϱ1(s)] ∈ IQ. Then
following similar lines as above we conclude that S/IQ is commutative.

(ii) By the hypothesis for all s, u ∈ S, we have

(15) ϱ1(u)ϱ2(s) + [u, s]′ ∈ IQ.

In (15), substituting sz for s, we get

ϱ1(u)sϱ2(z) + (ϱ1(u)ϱ2(s) + [u, s]′)z + s[u, z]′ ∈ IQ.

Using (15), we get

(16) ϱ1(u)sϱ2(z) + s[u, z]′ ∈ IQ.

In (16), substituting zu for z, we obtain ϱ1(u)sϱ2(z)u+ϱ1(u)szϱ2(u)+s[u, z]′u ∈
IQ and using (16) again, we get ϱ1(u)szϱ2(u) ∈ IQ and therefore ϱ1(u)Szϱ2(u)
⊆ IQ. By the primeness of IQ, we have either ϱ1(u) ∈ IQ or zϱ2(u) ∈ IQ.
Following the same process as above, we conclude that ϱ1(u) ∈ IQ or zϱ2(u) ∈
IQ for all u, z ∈ S. If ϱ1(u) ∈ IQ, then (15) yields [u, s] ∈ IQ, which shows that
S/IQ is commutative. Secondly if zϱ2(u) ∈ IQ, then it is easy to verify that
ϱ2(u) ∈ IQ, therefore the case becomes similar to the first case. □
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Following result is an extended form of the Corollary 1 of [9].

Theorem 2.3. Let ϱ1, ϱ2 be two derivations of a semiprime MA-semiring S.
If any one of the following statements holds:

(i) [ϱ1(u), ϱ2(s)] + [u, s]′ = 0
(ii) ϱ1(u)ϱ2(s) + [u, s]′ = 0

for all s, u ∈ S, then S is commutative.

Proof. (i) If either ϱ1 or ϱ2 is zero, then [u, s] = 0 and therefore S is com-
mutative. So we consider the case when both ϱ1 and ϱ2 are nonzero. As
S is semiprime, therefore there is a family IQ of prime ideals of S such that⋂
IQ = {0}. By the hypothesis, for all s, u ∈ S, we can write

[ϱ1(u), ϱ2(s)] + [u, s]′ ∈
⋂

IQ,

which further implies

[ϱ1(u), ϱ2(s)] + [u, s]′ ∈ IQ,

for all IQ ∈ IQ. Hence employing theorem 2.1, we obtain the required result.
(ii) Using similar arguments of first part, we obtain the required result. □

Theorem 2 of [9] is extended in the result that follows.

Theorem 2.4. Let IQ be a prime Q-ideal of an MA-semiring S and ϱ1, ϱ2 be
two derivations of S. If any one the following statements holds:

(i) If ϱ1(u) ◦ ϱ2(s) + u′ ◦ s ∈ IQ
(ii) If [ϱ1(u), ϱ2(s)] + u′ ◦ s ∈ IQ

for all s, u ∈ S, then S/IQ is commutative.

Proof. (i) By the hypothesis, for all s, u ∈ S, we have

(17) ϱ1(u) ◦ ϱ2(s) + u′ ◦ s ∈ IQ.

In (17), substituting sz for s, we get

ϱ1(u) ◦ (sϱ2(z)) + ϱ1(u) ◦ (ϱ2(s)z) + u′ ◦ (sz) ∈ IQ,

which further gives

ϱ1(u)sϱ2(z) + sϱ2(z)ϱ1(u) + ϱ1(u)ϱ2(s)z + ϱ2(s)zϱ1(u) + u′sz + szu′ ∈ IQ.

By the definition of MA-semiring, we can write

sϱ1(u)ϱ2(z) + s′ϱ1(u)ϱ2(z) + ϱ1(u)sϱ2(z) + sϱ2(z)ϱ1(u) + ϱ1(u)ϱ2(s)z

+ ϱ2(s)zϱ1(u) + ϱ2(s)ϱ1(u)z
′ + ϱ2(s)ϱ1(u)z + u′sz + su′z + suz + szu′ ∈ IQ

and therefore

s(ϱ1(u) ◦ ϱ2(z)) + [ϱ1(u), s]ϱ2(z) + (ϱ1(u) ◦ ϱ2(s))z
+ ϱ2(s)[z, ϱ1(u)] + (u ◦ s)′z + s[u, z] ∈ IQ.
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As IQ is Q-ideal, using (17), we get

(18) s(ϱ1(u) ◦ ϱ2(z)) + [ϱ1(u), s]ϱ2(z) + ϱ2(s)[z, ϱ1(u)] + s[u, z] ∈ IQ.

Using MA-semiring identities, from (17), we can write

s(ϱ1(u) ◦ ϱ2(z)) + [ϱ1(u), s]ϱ2(z) + ϱ2(s)[z, ϱ1(u)] + s(u ◦ z)′ + 2suz ∈ IQ.

Using hypothesis, we obtain

(19) [ϱ1(u), s]ϱ2(z) + ϱ2(s)[z, ϱ1(u)] + 2suz ∈ IQ.

In (19), replacing z by ϱ1(u), we obtain

(20) [ϱ1(u), s]ϱ2(ϱ1(u)) + ϱ2(s)[ϱ1(u), ϱ1(u)] + 2suϱ1(u) ∈ IQ.

As S is an MA-semiring, we have 2[ϱ1(u), ϱ1(u)] = [ϱ1(u), ϱ1(u)] and therefore
(20) becomes

[ϱ1(u), s]ϱ2(ϱ1(u)) + ϱ2(s)[ϱ1(u), ϱ1(u)](21)

+ ϱ2(s)[ϱ1(u), ϱ1(u)] + 2suϱ1(u) ∈ IQ.

Using (20) in (21), we obtain ϱ2(s)[ϱ1(u), ϱ1(u)] ∈ IQ and using it in (20), we
obtain

(22) [ϱ1(u), s]ϱ2(ϱ1(u)) + 2suϱ1(u) ∈ IQ.

In (22), writing sw in place of s, we obtain

s[ϱ1(u), w]ϱ2(ϱ1(u)) + [ϱ1(u), s]wϱ2(ϱ1(u)) + 2swuϱ1(u) ∈ IQ.

As IQ is a Q-ideal, using (22), we obtain [ϱ1(u), s]Sϱ2(ϱ1(u)) ⊆ IQ. By the
primeness of IQ, we obtain either [ϱ1(u), s] ∈ IQ or ϱ2(ϱ1(u)) ∈ IQ. If [ϱ1(u), s]
∈ IQ, then by Theorem 2.1, S/IQ is commutative. Secondly assume that
ϱ2(ϱ1(u)) ∈ IQ. In (19), replacing s by ϱ1(s), we obtain ϱ1(u) ◦ ϱ2(ϱ1(s)) +
u′ ◦ ϱ(s) ∈ IQ and using our supposition, we get u′ ◦ ϱ2(s) ∈ IQ, which further
implies

(23) u ◦ ϱ2(s) ∈ IQ.

In (23), substituting ϱ1(u) for u and using (17) again, we obtain for all s, u ∈ S

(24) u ◦ s ∈ IQ.

In (24), substituting us for s, we obtain u ◦ (us) = uus + usu ∈ IQ. Using
MA-semiring identities, we have uus + usu = uus + u(s + s′ + s)u = uus +
usu+ s′uu+ suu = (u2 ◦ s) + [u, s]u. Therefore

(25) (u2 ◦ s) + [u, s]u ∈ IQ.

As IQ is a Q-ideal, using (24) we obtain

(26) [u, s]u ∈ IQ.

In (26), substituting sr for s and using (26) again, we obtain [u, s]ru ∈ IQ.
Replacing r by rs′ we obtain

(27) [u, s]rs′u ∈ IQ.
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Multiplying (26) by s from the right, we have

(28) [u, s]rus ∈ IQ.

Adding (27) and (28), we obtain [u, s]r[u, s] ∈ IQ and therefore [u, s]S[u, s] ⊆
IQ. As IQ is prime, therefore [u, s] ∈ IQ, for all s, u ∈ S, which shows that
S/IQ is commutative.

(ii) By the hypothesis, for all s, u ∈ S, we have

(29) [ϱ1(u), ϱ2(s)] + u′ ◦ s ∈ IQ.

In (29), substituting sz for s, we get [ϱ1(u), ϱ2(sz)]+u′◦(sz) ∈ IQ and therefore

[ϱ1(u), sϱ2(z)] + [ϱ1(u), ϱ2(s)z] + u′sz + szu′ ∈ IQ,

which further implies

s[ϱ1(u), ϱ2(z)] + [ϱ1(u), s]ϱ2(z) + [ϱ1(u), ϱ2(s)]z + ϱ2(s)[ϱ1(u), z]

+ u′sz + sz(u′ + u+ u′) ∈ IQ.

Using the definition of an MA-semiring, we can write

s[ϱ1(u), ϱ2(z)] + [ϱ1(u), s]ϱ2(z) + [ϱ1(u), ϱ2(s)]z + ϱ2(s)[ϱ1(u), z]

+ u′sz + szu′ + suz + su′z ∈ IQ.

Rearranging the terms and using identities of an MA-semirings, we obtain

s[ϱ1(u), ϱ2(z)] + [ϱ1(u), s]ϱ2(z) + [ϱ1(u), ϱ2(s)]z + ϱ2(s)[ϱ1(u), z]

+ (u ◦ s)′z + s[u, z] ∈ IQ.

Using (29), we obtain

s[ϱ1(u), ϱ2(z)] + [ϱ1(u), s]ϱ2(z) + ϱ2(s)[ϱ1(u), z] + s[u, z] ∈ IQ,

and by the definition of an MA-semiring, it further implies

(30) s([ϱ1(u), ϱ2(z)] + (u ◦ z)′) + [ϱ1(u), s]ϱ2(z) + ϱ2(s)[ϱ1(u), z] + 2suz ∈ IQ.

Using (29) in (30), we get

(31) [ϱ1(u), s]ϱ2(z) + ϱ2(s)[ϱ1(u), z] + 2suz ∈ IQ.

In (31), substituting ϱ1(u) for z, we obtain

[ϱ1(u), s]ϱ2(ϱ1(u)) + ϱ2(s)[ϱ1(u), ϱ1(u)] + 2suϱ1(u) ∈ IQ

and using the same arguments as above, we can write

(32) [ϱ1(u), s]ϱ2(ϱ1(u)) + 2suϱ1(u) ∈ IQ.

In (32), substituting ws for s, we get

w[ϱ1(u), s]ϱ2(ϱ1(u)) + [ϱ1(u), w]sϱ2(ϱ1(u)) + 2wsuϱ1(u) ∈ IQ

and using (32) again, we obtain [ϱ1(u), w]Sϱ2(ϱ1(u)) ⊆ IQ, which further im-
plies [ϱ1(u), w] ∈ IQ or ϱ2(ϱ1(u)) ∈ IQ by the primeness of IQ. Firstly, assume
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that [ϱ1(u), w] ∈ IQ. In view of (13), we can conclude that either S/IQ is com-
mutative or ϱ2(ϱ1(u)) ∈ IQ. Secondly, assume that ϱ2(ϱ1(u)) ∈ IQ. In (29),
replacing s by ϱ1(s) and using the assumption, we get

(33) u ◦ ϱ1(s) ∈ IQ.

We see that (33) is the same as (23), therefore the remaining part follows as
above. □

Following result is an extension of the Corollary 2 of [9].

Theorem 2.5. Let S be a 2-torsion free MA-semiring which is either semipri-
me or unitary. Then there are no derivations ϱ1, ϱ2 satisfying one of the
following:

(i) ϱ1(u) ◦ ϱ2(s) + u′ ◦ s = 0
(ii) [ϱ1(u), ϱ2(s)] + u′ ◦ s = 0

for all s, u ∈ S.

Proof. Firstly assume that S is a 2-torsion free semiprime MA-semring and ϱ1,
ϱ2 are derivations satisfying (i). Then there is a family IQ of prime ideals such
that

⋂
IQ = {0}. Therefore for all IQ ∈ IQ, we can write

ϱ1(u) ◦ ϱ2(s) + u′ ◦ s ∈ IQ

for all u, s ∈ S. From Theorem 2.2, we have [u, s] ∈ IQ for all IQ ∈ IQ and
therefore [u, s] = 0, which implies that S is commutative. Therefore from (i),
we can write

2(ϱ1(u)ϱ2(s) + u′s) = 0

and by the 2-torsion freeness of S, we have

(34) ϱ1(u)ϱ2(s) + u′s = 0.

In (34), substituting sw for s and using (34) again, we obtain ϱ1(u)sϱ2(w) = 0
and therefore ϱ2(w)ϱ1(u)Sϱ2(w)ϱ1(u) = {0} by the semiprimeness of S, we
have ϱ2(w)ϱ1(u) = 0. Therefore (i) becomes u ◦ s = 0 for all u, s ∈ S and since
S is commutative, by the 2-torsion freeness of S, we have us = 0 and therefore
uSu = {0}. As S is semiprime, we have u = 0, which implies that S = {0}, a
contradiction. Secondly, assume that S is unitary. Replacing s by 1 in (i), we
have

(35) ϱ1(u)ϱ2(1) + ϱ2(1)ϱ1(u) + 2u′ = 0.

By the definition of derivation we have ϱ2(1) = ϱ2(1 · 1) = 1ϱ2(1) + ϱ2(1) · 1 =
2ϱ2(1). Therefore from (35), we get

ϱ1(u)ϱ2(1) + ϱ1(u)ϱ2(1) + ϱ2(1)ϱ1(u) + 2u′ = 0.

Using (35) again, we get ϱ1(u)ϱ2(1) = 0. Similarly we can show that ϱ2(1)ϱ1(u)
= 0. Therefore from (35) we obtain 2u = 0 and by the 2-torsion freeness of
S, we get S = {0}, which is a contradiction. Hence we conclude that there is
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no derivation satisfying (i). Similarly we can prove the result for hypothesis
(ii). □

Following result is an extended form of the Proposition 1 of [9].

Theorem 2.6. Let IQ be a prime Q-ideal of an MA-semiring S and ϱ1, ϱ2 be
derivations of S. If

ϱ1(u)ϱ2(s) + u ◦ s′ ∈ IQ for all s, u ∈ S,

then S/IQ is a 2-torsion commutative MA-semiring and ϱ1(S) ⊆ IQ or ϱ2(S) ⊆
IQ.

Proof. By the hypothesis, we have

(36) ϱ1(u)ϱ2(s) + u ◦ s′ ∈ IQ.

In (36), substituting sr for s, we obtain

(37) ϱ1(u)ϱ2(r)r + ϱ1(u)sϱ2(r) + us′r + s′ru ∈ IQ.

By MA-semiring identities, we have

us′r + s′ru = us′r + (s′ + s+ s′)ru

= us′r + (s′ur + vur + s′ru)

= (u ◦ s′)r + s[u, r].

Therefore (37) becomes

(38) ϱ1(u)ϱ2(r)r + ϱ1(u)sϱ2(r) + (u ◦ s′)r + s[u, r] ∈ IQ.

Using (36) in (38), we obtain

(39) ϱ1(u)sϱ2(r) + s[u, r] ∈ IQ.

In (39), replacing r by ru, we get ϱ1(u)sϱ2(r)u+ϱ1(u)srϱ2(u)+s[u, r]u ∈ IQ and
using (39) again, we obtain ϱ1(u)srϱ2(u) ∈ IQ and therefor ϱ1(u)Srϱ2(u) ⊆ IQ.
As IQ is prime, therefore as above we have either ϱ1(u) ∈ IQ or rϱ2(u) ∈ IQ.
If rϱ2(u) ∈ IQ, then ϱ2(u) ∈ IQ. Therefore we conclude that either ϱ1(S) ⊆
IQ or ϱ2(S) ⊆ IQ. In both cases, (39) becomes s[u, r] ∈ IQ and therefore
[u, r]S[u, r] ⊆ IQ. Using primeness of IQ, we obtain [u, r] ∈ IQ. Hence S/IQ is
commutative. We next show that S/IQ is 2-torsion. For this, we suppose that
S/IQ is 2-torsion free. By the hypothesis, we have x ◦ y ∈ IQ, which further
implies

IQ = x ◦ y + IQ

= (x+ IQ) ◦ (y + IQ)

= (x+ IQ)(y + IQ) + (x+ IQ)(y + IQ)

= 2(x+ IQ)(y + IQ)

since S/IQ is commutative. By our assumption, S/IQ is 2-torsion free. By
using the primeness of IQ, we can find x + IQ = IQ or y + IQ = IQ, implying
that S = IQ, which is a contradiction. Hence S/IQ is 2-torsion. □
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Following result provides a generalized form of the Theorem 3 of [9].

Theorem 2.7. Let IQ be a prime Q-ideal of an MA-semiring S and ϱ1, ϱ2 be
derivations of S. If

ϱ1(u) ◦ ϱ2(s) + [u, s]′ ∈ IQ for all u, s ∈ S,

then S/IQ is commutative. Moreover if S/IQ is 2-torsion free, then ϱ1(S) ⊆ IQ
or ϱ2(S) ⊆ IQ.

Proof. For all s, u ∈ S, we have

(40) ϱ1(u) ◦ ϱ2(s) + [u, s]′ ∈ IQ.

In (40), substituting sr for s, we get

ϱ1(u)sϱ2(r) + sϱ2(r)ϱ1(u) + ϱ1(u)ϱ2(s)r+ ϱ2(s)rϱ1(u) + s[u, r]′ + [u, s]′r ∈ IQ.

As r+ r′ + r = r and r+ r′ ∈ Z(S) for all r ∈ S, from the last identity, we can
write

ϱ1(u)sϱ2(r) + s′ϱ1(u)ϱ2(r) + sϱ1(u)ϱ2(r) + sϱ2(r)ϱ1(u) + ϱ1(u)ϱ2(s)r

+ ϱ2(s)rϱ1(u) + ϱ2(s)ϱ1(u)r
′ + ϱ2(s)ϱ1(u)r + s[u, r]′ + [u, s]′r ∈ IQ.

Rearranging the terms, we get

[ϱ1(u), s]ϱ2(r) + s(ϱ1(u) ◦ ϱ2(r)) + (ϱ1(u) ◦ ϱ2(s))r
+ ϱ2(s)[r, ϱ1(u)] + s[u, r]′ + [u, s]′r ∈ IQ.

As IQ is a Q-ideal, using (40), we get

(41) [ϱ1(u), s]ϱ2(r) + ϱ2(s)[r, ϱ1(u)] ∈ IQ.

In (41), substituting ϱ1(u) for s, we get

[ϱ1(u), ϱ1(u)]ϱ2(r) + ϱ2(ϱ1(u))[r, ϱ1(u)] ∈ IQ.

Using the same arguments as above, we obtain

ϱ2(ϱ1(u))[r, ϱ1(u)] ∈ IQ,

and hence either ϱ2(ϱ1(u)) ∈ IQ or [r, ϱ1(u)] ∈ IQ. Assume that ϱ2(ϱ1(u)) ∈ IQ.
In (40), replacing s by ϱ1(s), we obtain ϱ1(u) ◦ ϱ2(ϱ1(s)) + [u, ϱ1(s)]

′ ∈ IQ. As
ϱ2(ϱ1(u)) ∈ IQ, therefore we obtain

(42) [ϱ1(s), u] ∈ IQ.

We observe that (42) is the same as (13) of the proof of Theorem 2.2, therefore
S/IQ is commutative. We next assume that S/IQ is 2-torsion free. Since S/IQ
is commutative, therefore from (40), we can write ϱ1(u)Sϱ2(s) ⊆ IQ. By the
primeness of IQ, we have ϱ1(S) ⊆ IQ or ϱ2(S) ⊆ IQ. □



ON PARTITIONING IDEALS OF SEMIRINGS 607

Remark 2.8. If S/IQ is commutative, then it has no zero divisors. For x +
IQ, y + IQ ∈ S/IQ, let IQ = (x+ IQ)(y + IQ), then for any s+ IQ ∈ S/IQ, we
have IQ = (x + IQ)(s + IQ)(y + IQ) = xsy + IQ. By the Proposition 1.5, we
can write xSy ⊆ IQ. By the primeness of IQ, we have x ∈ IQ or y ∈ IQ and
hence x+ IQ = IQ or y + IQ = IQ.

In view of Theorem 2.7 and using the similar arguments of Theorem 2.5, we
can obtain the following result, which is a generalized version of Corollary 3 of
[9].

Theorem 2.9. Let S be a 2-torsion free MA-semiring, which is either semipri-
me or with unity. There are no derivations ϱ1 and ϱ2 satisfying one of the
following conditions:

(i) ϱ1(u) ◦ ϱ2(s) + (u ◦ s)′ = 0
(ii) ϱ1(u) ◦ ϱ2(s) + [u, s]′ = 0

for all s, u ∈ S.

3. Conclusion

This study has mainly dealt with the semirings and their partitioning ideals
known as Q-ideals, linked by the several identities of derivations. In this regard,
we have investigated some differential identities involving a semiring S and its
prime Q-ideal IQ, leading to the commutativity of the quotient semiring S/IQ.
We have also explored some other features of the quotient semirings. We can
get some interesting outcomes for the prime semirings by taking IQ = {0} in
the main section, and this shows that proving results for the aforementioned
quotient semirings is more generalized than looking into the results of prime
semirings. The results of this article for semiprime ideals would be a fascinat-
ing open topic for researchers.
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