DOI QR코드

DOI QR Code

식물성 천연염료에 의한 박테리아 셀룰로오스 섬유소재의 염색 특성

Assessing the Dyeing Properties of Bacterial Cellulose Using Plant-based Natural Dyes

  • 민준영 (숙명여자대학교 의류학과) ;
  • 김현진 (한국생산기술연구원 인간중심생산기술연구소 섬유솔루션부문) ;
  • 김혜림 (숙명여자대학교 의류학과/숙명여자대학교 창의융합연구소)
  • Juneyoung Minn (Dept. of Clothing and Textiles, Sookmyung Women's University) ;
  • Hyunjin Kim (Textile Innovation R&D Department, Smart Textronics Center, Korea Institute of Industrial Technology) ;
  • Hye Rim Kim (Dept. of Clothing and Textiles, Sookmyung Women's University/Research Institute for Creativity and Convergence, Sookmyung Women's University)
  • 투고 : 2024.02.08
  • 심사 : 2024.05.14
  • 발행 : 2024.08.31

초록

This study aimed to assess the colorizing properties of bacterial cellulose (BC) using plant-based dyes, namely spinach, beet, and banana peel, and determine the dyeing conditions of each dye based on color strength (K/S) values. Tannic acid and walnut shell powder were utilized as bio-mordants, and their effects on the dyeability of BC were compared to metallic mordants. Additionally, the type of mordant and the mordanting method were assessed according to their rubbing fastness and dry-cleaning fastness. The K/S values of the colorized and mordanted BCs were also compared to examine their mordanting conditions. Finally, the mordanting conditions for spinach, beet, and banana peel dyeing were selected as post-mordanting with tannic acid, meta-mordanting with tannic acid, and post-mordanting with walnut shell powder, respectively. Based on the results, the selected mordanting conditions improved both rubbing fastness and dry-cleaning fastness of BCs to grade 5, and the light fastness achieved grade 4-5. The tensile strength and flexibility of the dyed BCs were also enhanced and comparable to that of untreated cowhide leather.

키워드

과제정보

본 논문은 석사 학위 논문의 일부임.

참고문헌

  1. Adeel, S., Ahmad, S., Habib, N., Fazal-ur-Rehman, Mia, R., & Ahmed, B. (2022). Coloring efficacy of Nyctanthes Arbortristis based yellow natural dye for surface-modified wool. Industrial Crops and Products, 188(15), 115571. https://doi.org/10.1016/j.indcrop.2022.115571
  2. Akter, M., Rahman, F. B. A., Abedin, M. Z., & Kabir, S. M. F. (2021). Adsorption characteristics of banana peel in the removal of dyes from textile effluent. Textiles, 1(2), 361-375. https://doi.org/10.3390/textiles1020018
  3. Alshamar, H. A., Hatem, N. A., & Dapson, R. W. (2022). Betacyanins are plant-based dyes with potential as histological stains. Biotechnic & Histochemistry, 97(7), 480-489. https://doi.org/10.1080/10520295.2022.2113142
  4. Ariram, N., & Madhan, B. (2020) Development of bio-acceptable leather using bagasse. Journal of Cleaner Production, 250(20), 119441. https://doi.org/10.1016/j.jclepro.2019.119441
  5. Batool, F., Adeel, S., Azeem, M., Khan, A. A., Bhatti, I. A., Ghaffar, A., & Iqbal, N. (2013). Gamma radiations induced improvement in dyeing properties and colorfastness of cotton fabrics dyed with chicken gizzard leaves extracts. Radiation Physics and Chemistry, 89, 33-37. https://doi.org/10.1016/j.radphyschem.2013.03.045
  6. Chan, C. K., Shin, J., & Jiang, X. K. (2018). Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design. Clothing and Textiles Research Journal, 36(1), 33-44. https://doi.org/10.1177/0887302X17737177
  7. Chaudhry, F., Ahmad, M. L., Hayat, Z., Ranjha, M. M. A. N., Chaudhry, K., Elboughdiri, N., Asmari, M., & Uddin, J. (2022). Extraction and evaluation of the antimicrobial activity of polyphenols from banana peels employing different extraction techniques. Separations, 9(7), 165. https://doi.org/10.3390/separations9070165
  8. Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., & Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chemistry, 273, 192-200. https://doi.org/10.1016/j.foodchem.2018.08.022
  9. Cho, S. S., Soung, H. S., & Kim, B. H. (1998). The dyeability properties of some yellow natural dyes(I): Extracted from gardenia. Journal of the Korean Society of Dyers and Finishers, 10(1), 1-10.
  10. Costa, A. F. d. S., Amorim, J. D. P. D., Almeida, F. C. G., Lima, I. D. D., Paiva, S. C. D., Rocha, M. A. V., Vinhas, G. M., & Sarubbo, L. A. (2019). Dyeing of bacterial cellulose films using plant-based natural dyes. International Journal of Biological Macromolecules, 121, 580-587. https://doi.org/10.1016/j.ijbiomac.2018.10.066
  11. Dang-Bao, T., & Tran, U. P. N. (2023). Stability improvement of betalains recovered from red dragon fruit peels(Hylocereus polyrhizus) by cellulose-based encapsulation. Fibers and Polymers, 24, 2683-2696. https://doi.org/10.1007/s12221-023-00248-y
  12. Don, T.-M., Liu, L.-M., Chen, M., & Huang, Y.-C. (2021). Crosslinked complex films based on chitosan and ulvan with antioxidant and whitening activities. Algal Research, 58, 102423. https://doi.org/10.1016/j.algal.2021.102423
  13. Du, R., Zhao, F., Peng, Q., Zhou, Z., & Han, Y. (2018). Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydrate Polymers, 194, 200-207. https://doi.org/10.1016/j.carbpol.2018.04.041
  14. Fernandes, M., Souto, A. P., Dourado, F., & Gama, M. (2021). Application of bacterial cellulose in the textile and shoe industry: Development of biocomposites. Polysaccharides, 2(3), 566-581. https://doi.org/10.3390/polysaccharides2030034
  15. Ferreira, E. S. B., Hulme, A. N., McNab, H., & Quye, A. (2004). The natural constituents of historical textile dyes. Chemical Society Reviews, 33, 329-336. https://doi.org/10.1039/B305697J
  16. Galdino Jr., C. J. S., Medeiros, A. D. S., Amorim, J. D. P., Nascimento, H. A., Henrique, M. A., Costa, A. F. S., & Sarubbo, L. A. (2021). The future of sustainable fashion: Bacterial cellulose biotextile naturally dyed. Chemical Engineering Transactions, 86, 1333-1338. https://doi.org/10.3303/CET2186223
  17. Garcia, C., & Prieto, M. A. (2019). Bacterial cellulose as a potential bioleather substitute for the footwear industry. Microbial Biotechnology, 12(4), 582-585. https://doi.org/10.1111/1751-7915.13306
  18. Ghaheh, F. S., Haji, A., & Daneshvar, E. (2023). Sustainable dyeing process for nylon 6 fabrics by rhubarb flower using different bio-mordants. Sustainability, 15(12), 9232. https://doi.org/10.3390/su15129232
  19. Ghaheh, F. S., Moghaddam, M. K., & Tehrani, M. (2021). Comparison of the effect of metal mordants and bio-mordants on the colorimetric and antibacterial properties of natural dyes on cotton fabric. Coloration Technology, 137(6), 689-698. htps://doi.org/10.1111/cote.12569
  20. Gunawan, M. I., & Barringer S. A. (2000). Green color degradation of blanched broccoli (Brassica oleracea) due to acid and microbial growth. Journal of Food Processing and Preservation, 24(3), 253-263. https://doi.org/10.1111/j.1745-4549.2000.tb00417.x
  21. Gupta, R., & Dave, D. D. (2021). Biomaterial: A sustainable alternative to animal leather and synthetic material. Annals of the Romanian Society for Cell Biology, 25(6), 7317-7331.
  22. Gutierrez, T. J., Guzman, R., Jaramillo, C. M., & Fama, L. (2016). Effect of beet flour on films made from biological macromolecules: Native and modified plantain flour. International Journal of Biological Macromolecules, 82, 395-403. https://doi.org/10.1016/j.ijbiomac.2015.10.020
  23. Gwak, M. A., Hong, B. M., & Park, W. H. (2021). Hyaluronic acid/tannic acid hydrogel sunscreen with excellent anti-UV, antioxidant, and cooling effects. International Journal of Biological Macromolecules. 191, 918-924. https://doi.org/10.1016/j.ijbiomac.2021.09.169
  24. Han, J., Shim, E., & Kim, H. R. (2019). Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Textile Research Journal, 89(6), 1094-1104. https://doi.org/10.1177/00405175187639
  25. Han, M. R., & Lee, J. S. (2009). Natural dyeing of cotton fabric with Rumex crispus L. root. Journal of the Korean Society of Clothing and Textiles, 33(2), 222-229. https://doi.org/10.5850/JKSCT.2009.33.2.222
  26. Herbach, K. M., Stintzing, F. C., & Carle, R. (2006). Betalain stability and degradation-structural and chromatic aspects. Journal of Food Science, 71(4), R41-R50. https://doi.org/10.1111/j.1750-3841.2006.00022.x
  27. Hestrin, S., & Schramm, M. (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58, 345-352. https://doi.org/10.1042/bj0580345
  28. Hosseinnezhad, M., Gharanjig, K., Imani, H., Rouhani, S., & Adeel, S. (2023). Environmentally dyeing of wool yarns using of combination of myrobalan and walnut husk as biomordants. Progress in Color, Colorants and Coatings, 16(2), 197-205. https://doi.org/10.30509/pccc.2022.167001.1177
  29. Jun, Y., Yoo, D. I., & Shin, Y. (2015). Utilization of metasequoia(Metasequoia glyptostroboides) cone as a new natural dye resource(1): Dyeing of cotton fiber. Textile Coloration and Finishing, 27(2), 142-148. https://doi.org/10.5764/TCF.2015.27.2.142
  30. Kim, H., & Kim, H. R. (2022). Production of coffee-dyed bacterial cellulose as a bio-leather and using it as a dye adsorbent. PLoS ONE, 17(3), e0265743. https://doi.org/10.1371/journal.pone.0265743
  31. Kim, H., Song, J. E., & Kim, H. R. (2021a). Comparative study on the physical entrapment of soy and mushroom proteins on the durability of bacterial cellulose bio-leather. Cellulose, 28, 3183-3200. https://doi.org/10.1007/s10570-021-03705-0
  32. Kim, H., Song, J. E., & Kim, H. R. (2021b). Ex situ coloration of laccase-entrapped bacterial cellulose with natural phenolic dyes. Journal of the Korean Society of Clothing and Textiles, 45(5), 866-880. https://doi.org/10.5850/JKSCT.2021.45.5.866
  33. Kim, J. S., Cho, Y. S., & Choi, S. H. (2003). Dyeability and functional characteristics of Arecae semen extract. Human Ecology Research, 41(7), 13-24.
  34. Kim, S. (2016). Natural dyeing of sheep leather with amur cork tree. Journal of Fashion Business, 20(6), 76-86. https://doi.org/10.12940/jfb.2016.20.5.76
  35. Krishnamoorthy, G., Sadlla, S., Sehgal, P. K., & Mandal, A. B. (2012). Green chemistry approaches to leather tanning process for making chrome-free leather by unnatural amino acids. Journal of Hasardous Materials, 215-216, 173-182. https://doi.org/10.1016/j.jhazmat.2012.02.046
  36. Krizova, H., & Wiener, J. (2015). Dyeing of woollen and polyamide fabrics by beetroot waste from cannery. Waste Forum.
  37. Meyer, M., Dietrich, S., Schulz, H., & Mondschein, A. (2021). Comparison of the technical performance of leather, artificial leather, and trendy alternatives. Coating, 11(2), 226. https://doi.org/10.3390/coatings11020226
  38. Minguez-Mosquera, M. I., Garrido-Fernandez, J., & GandulRojas, B. (1989). Pigment changes in olives during fermentation and brine storage. Journal of Agricultural and Food Chemistry, 37(1), 8-11. https://doi.org/10.1021/jf00085a002
  39. Miyamoto, H., Tsuduki, M., Ago, M., Yamane, C., Ueda, M., & Okajima, K. (2014). Influence of dyestuffs on the crystallinity of a bacterial cellulose and a regenerated cellulose. Textile Research Journal, 84(11), 1147-1158. https://doi.org/10.1177/0040517513517960
  40. Naghdi, S., Rezaei, M., & Abdollahi, M. (2021). A starch-based pH-sensing and ammonia detector film containing betacyanin of paperflower for application in intelligent packaging of fish. International Journal of Biological Macromolecules, 191, 161-170. https://doi.org/10.1016/j.ijbiomac.2021.09.045
  41. Nguyen, T. B. T., Ketsa, S., & van Doorn, W. G. (2003). Relationship between browning and the activities of polyphenoloxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. Postharvest Biology and Technology, 30(2), 187-193. https://doi.org/10.1016/S0925-5214(03)00103-0
  42. Phan, H. N., Vu, N. K., & Bui, H. M. (2023). Fabrication and characterization of patterned leather-like biomaterial derived from brazilein/glycerol-finished bacterial cellulose by using 3-in-1 textile finishing process. Cellulose, 30, 5217-5237. https://doi.org/10.1007/s10570-023-05193-w
  43. Prilepskii, A., Nikolaev, V., & Klaving, A. (2023). Conductive bacterial cellulose: From drug delivery to flexible electronics. Carbohydrate Polymers, 313, 120850. https://doi.org/10.1016/j.carbpol.2023.120850
  44. Provin, A. P., Reis, V. O. D., Hilesheim, A. E., Bianchet, R. T., & Dutra, A. R. D. A. (2021). Use of bacterial cellulose in the textile industry and the wettability challenge-a review. Cellulose, 28, 8255-8274. https://doi.org/10.1007/s10570-021-04059-3
  45. Pyakurel, A., Dahal, B., & Rijal, S. (2019). Effect of molasses and organic fertilizer in soil fertility and yield of spinach in Khotang, Nepal. International Journal of Applied Sciences and Biotechnology, 7(1), 49-53. https://doi.org/10.3126/ijasbt.v7i1.23301\
  46. Rahimah, S., Malinda, W., Zaida, Sukri, N., Salma, J. K., Tallei, T. E., & Idroes, R. (2020). Betacyanin as bioindicator using time-temperature integrator for smart packaging of fresh goat milk. The Scientific World Journal, 2020, 4303140. https://doi.org/10.1155/2020/4303140
  47. Ren, Y., Gong, J., Wang, F., Li, Z., Zhang, J., Fu, R., & Lou, J. (2016). Effect of dye bath pH on dyeing and functional properties of wool fabric dyed with tea extract. Dyes and Pigments, 134, 334-341. https://doi.org/10.1016/j.dyepig.2016.07.032
  48. Saguy, I. (1979). Thermostability of red beet pigments(betanine and vulgaxanthin-I): Influence of pH and temperature. Journal of Food Science, 44(5), 1554-1555. https://doi.org/10.1111/j.1365-2621.1979.tb06488.x
  49. Sang, S., Lambert, J. D., Ho, C., & Yang, C. S. (2011). The chemistry and biotransformation of tea constituents. Pharmacological Research, 64(2), 87-99. https://doi.org/10.1016/j.phrs.2011.02.007
  50. Sengupta, D., Mondal, B., & Mukherjee, K. (2015). Visible light absorption and photo-sensitizing properties of spinach leaves and beetroot extracted natural dyes. Spectrochemica Acta Part A: Molecular and Biomolecular Spectroscopy, 148(5), 85-92. https://doi.org/10.1016/j.saa.2015.03.120
  51. Seo, H. Y., Kim, H. R., & Song, W. S. (2011). Effects of Chestnut hulls mordant on Oenothera odorata jacguin-dyed fabrics. Fashion & Textile Research Journal, 13(6), 983-989. https://doi.org/10.5805/KSCI.2011.13.6.983
  52. Shim, E., & Kim, H. R. (2019). Coloration of bacterial cellulose using in situ and ex situ methods. Textile Research Journal, 89(7), 1297-1310. https://doi.org/10.1177/0040517518770673
  53. Silva, V. D., Macedo, M. C. C., Rodrigues, C. G., dos Santos, A. N., e Loyola, A. C. D. F., & Fante, C. A. (2020). Biodegradable edible films of ripe banana peel and starch enriched with extract of eriobotrya japonica leaves. Food Bioscience, 38, 100750. https://doi.org/10.1016/j.fbio.2020.100750
  54. Skopinska, A., Tuwalska, D., Wybraniec, S., Starzak, K., Mitka, K., Kowalski, P., & Szaleniec, M. (2012). Spectrophotometric study on betanin photodegradation. Challenges of Modern Technology, 3(4), 34-38.
  55. Sole, R., Taddei, L., Franceschi, C., & Beghetto, V. (2019). Efficient chemo-enzymatic transformation of animal biomass waste for eco-friendly leather production. Molecules, 24 (16), 2979. https://doi.org/10.3390/molecules24162979
  56. Song, J. E., Cavaco-Paulo, A., Silva, C., & Kim, H. R. (2020). Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. Textile Research Journal, 90(2), 166-178. https://doi.org/10.1177/0040517519862886
  57. Song, J. E., Su, J., Loureiro, A., Martins, M., Cavaco-paulo, A., Kim, H. R., & Silva, C. (2017). Ultrasound-assisted swelling of bacterial cellulose. Engineering in Life Sciences, 17(10), 1108-1117. https://doi.org/10.1002/elsc.201700085
  58. Song, J. E., Su, J., Noro, J., Cavaco-Paulo, A., Silva, C., & Kim, H. R. (2018). Bio-coloration of bacterial cellulose assisted by immobilized laccase. AMB Express, 8, 19. https://doi.org/10.1186/s13568-018-0552-0
  59. Song, W. S., Kim, I. Y., Kim, H. R., & Lee, S. H. (2023). Textiles (5th ed.). Kyomunsa. 
  60. Tao, X., Zhang, L., Ma, X., Xu, X., Guo, A., Hou, F., & Liu, J. (2017). Preparation of a flexible high emissivity coating on quartz fiber fabric for thermal protection. Ceramics International, 43(16), 14292-14300. https://doi.org/10.1016/j.ceramint.2017.07.181
  61. Yildirim, L., & Erdem Ìsmal, O. (2019). Banana peel in dyeing of polyamide/elastane blend fabric. Research Journal of Textile and Apparel, 23(2), 124-133. https://doi.org/10.1108/RJTA-07-2018-0043
  62. Yim, S. M., Song, J. E., & Kim, H. R. (2017). Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry, 59, 26-36. https://doi.org/10.1016/j.procbio.2016.07.001
  63. Yoo, H. J., Ahn, C., & Narantuya, L. (2013). Extractions of chlorophyll from spinach and mate powders and their dyeability on fabrics. Journal of the Korean Society of Clothing and Textiles, 37(3), 413-423. https://doi.org/10.5850/JKSCT.2013.37.3.413
  64. Zaini, H. M., Roslan, J., Saallah, S., Munsu, E., Sulaiman, N. S., & Pindi, W. (2022). Banana peel as a bioactive ingredient and its potential application in the food industry. Journal of Functional Foods, 92, 105054. https://doi.org/10.1016/j.jff.2022.105054