DOI QR코드

DOI QR Code

정제된 시벅턴오일을 이용한 천연 자외선차단 크림의 제조

Preparation of Natural Sunscreen Cream Using Refined Sea Buckthorn Oil

  • 김동환 (단국대학교 화학공학과) ;
  • 핑정위엔 (단국대학교 화학공학과) ;
  • 이승범 (단국대학교 화학공학과)
  • Dong Hwan Kim (Department of Chemical Engineering, Dankook University) ;
  • Zhengyuan Ping (Department of Chemical Engineering, Dankook University) ;
  • Seung Bum Lee (Department of Chemical Engineering, Dankook University)
  • 투고 : 2024.07.02
  • 심사 : 2024.07.18
  • 발행 : 2024.08.10

초록

정제된 시벅턴오일을 사용하여 자외선차단 크림을 제조하고, 자외선 흡수능 및 유화안정성을 최적화하기 위해 중심합 성계획모델 반응표면분석법(CCD-RSM)로 실험 조건을 설계하였다. 실험의 독립변수는 유화제 첨가량, 유화시간, 점증제 첨가량으로 설정하였고, 반응치로는 ESI, MDS, 290 nm에서의 흡광도로 설정 후 실험을 진행하였다. RSM 최적화를 통해 산출된 회귀방정식 계수의 F-value와 P-value을 통해 반응치에 가장 영향을 주는 주효과도와 교호효과도를 분석하였고 P-value를 통해 계수의 통계적 유의성을 평가하였다. 반응표면분석법을 통해 산출된 최적 유화조건은 유화제 첨가량(4.39 wt%), 유화시간(25.42 min) 및 점증제 첨가량(1.24 wt%)으로 산출되었고, 이때 반응치 값은 ESI (98.5%), MDS (322.9 nm), 그리고 UV 흡광도(2.73)이다. 산출된 최적 조건으로 실제 실험을 진행한 결과 평균 오차율은 ± 2.7% 로 측정되었다.

To improve the UV absorbance and emulsion stability of sunscreen creams prepared using refined seabuckton oil, experimental conditions were designed utilizing the central composite design model-response surface methodology (CCD-RSM). The amount of surfactant, emulsification time, and thickener amount were chosen as independent variables, and the experiment was carried out after the reaction values of ESI, MDS, and UV absorbance at 290 nm were determined. The main effect and interaction effect, which have the most influence on the response value, were analyzed through the F-value and P-value of the regression equation coefficient calculated through RSM, and the statistical significance of the coefficient was evaluated through the P-value. The optimal emulsification conditions using RSM were calculated as follows: amount of surfactant (4.39 wt%), emulsification time (25.42 min), and amount of thickener (1.24 wt%). At these conditions, the reaction value was calculated as ESI (98.5%), MDS (32.9 nm), and UV absorbance (2.73). As a result of conducting an actual experiment under the calculated optimal conditions, the average error rate was measured as ± 2.7%

키워드

참고문헌

  1. J. Y. Yeon, S. D. Hong, S. B. Choi, T. G. Kim, C. H. Lee, S. G. Lee, and H. B. Pyo, Stability and sun protection efficacy of sunscreens based on the solubility and a combination of organic UV absorbers, J. Soc. Cosmet. Sci. Korea, 41, 189-199 (2015). 
  2. D. O. John, J. Stuart, A. O. Alexandra, and S. Timothy, UV radiation and the skin, Int. J. Mol. Sci., 14, 12222-12248 (2013). 
  3. W. G. Cho and Y. K. Cha, Synergistic effects of UV absorbance of nanoemulsions formed with organic UV filters and wax, J. Soc. Cosmet. Sci. Korea, 41, 57-62 (2015). 
  4. C. Kim, S. B. Jeong, G. H. Im, M. H. Gang, J. H. An, J. H. Kim, and H. Lee, Development of multifunctional natural sunscreen (BHC-S) having sunscreening and anti-wrinkle, J. Soc. Cosmet. Sci. Korea, 43, 321-327 (2017). 
  5. H. S. Kim, A study on the trends of the natural UV protection materials related to skin beauty, J. Korean Appl. Sci. Technol., 38, 107-117 (2021). 
  6. J. S. Moon, Development of natural sunscreen using plant extracts, J. Korean Appl. Sci. Technol., 37, 1138-1150 (2020). 
  7. S. Hong, Y. F. Zheng, and S. B. Lee, Optimization for decolorization and UV-absorbility of refined sea buckthorn oil using CCDRSM, Appl. Chem. Eng., 32, 61-67 (2021). 
  8. A. Zielinska and L. Nowak, Abundance of active ingredients in sea buckthorn oil, Lipids Health Dis., 16, 1-11 (2017). 
  9. H. Kim, H. Cho, Y. K. Seo, S. Kim, M. Y. Yoon, H. Kang, C. S. Park, and J. K. Park, Inhibitory effects of sea buckthorn (Hippophae rhamnoides L.) seed on UVB - induced photoaging in human dermal fibroblasts, Biotechnol. Bioprocess Eng., 17, 465-474 (2012). 
  10. S. M. Sabir, H. Maqsood, S. D. Ahmed, A. H. Shan, and M. Q. Khan, Chemical and nutritional constituents of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berries from pakistan, Ital. J. Food Sci., 17, 455-462 (2005). 
  11. I. K. Hong, S. I. Kim, B. R. Park, J. H. Choi, and S. B. Lee, Evaluation of emulsion stability for cosmetic facial cream emulsion using mixed nonionic emulsifier, Appl. Chem. Eng., 27, 527-531 (2016). 
  12. S. Abramov, A. Berndt, K. Georgieva, P. Ruppik, and H. P. Schuchmann, Investigation of the influence of mean droplet size and shear rate on crystallization behavior of hexadecane-in-water dispersions, Colloids Surf., 529, 513-522 (2017). 
  13. S. B. Lee, C. L. Zuo, Y. Xu, and I. K. Hong, Emulsification of natural sunscreen with green tea extract : Optimization using CCDRSM, Appl. Chem. Eng., 31, 532-538 (2020). 
  14. B. H. Yoo, C. L. Zuo, and S. B. Lee, Preparation of cosmeceuticals containing flos sophorae immaturus extracts: Optimization using box-behnken design model, Appl. Chem. Eng., 31, 404-410 (2020). 
  15. S. Hosseini, B. G. H. Tarzi, M. Ghachorloo, M. Ghavami, and H. Bakhoda, Optimization on the stability of linseed oil-in-water nanoemulsions generated by ultrasonic emulsification using response surface methodology (RSM), Orient. J. Chem., 31, 1223-1230 (2015). 
  16. M. O. Saeed, K. Azizli, M. Isa, and M. J. K. Bashir, Application of CCD in RSM to obtain optimize treatment of POME using Fenton oxidation process, J. Water Process Eng., 8, 7-16 (2015). 
  17. D. H. Kim and S. B. Lee, Extraction of nature pigment with antioxidant properties from sprout barley - Optimiztion using CCD-RSM, Appl. Chem. Eng., 35, 222-229 (2024). 
  18. M. Tripathim A. Bhatnagar, N. M. Mubarak, J. N. Sahu, and P. Ganesan, RSM optimization of microwave pyrolysis parameters to produce OPS cahr with high yield and large BET surface area, Fuel, 277, 118-184 (2020). 
  19. H. J. Kim and W. B. Yoon, Determination of optimum processinf conditions for extruded rice cake using response surface methodology, Korean J. Food. Presev., 27, 601-616 (2020).