DOI QR코드

DOI QR Code

실리콘 기반 음극의 구조적 안전성 향상을 위한 가교 구조를 가지는 수분산 고분자 바인더의 분자 구조 설계

Molecular Design of Water-dispersed Polymer Binder with Network Structure for Improved Structural Stability of Si-based Anode

  • 임은영 (부산대학교 공과대학 응용화학공학부) ;
  • 이은솔 (부산대학교 공과대학 응용화학공학부) ;
  • 이진홍 (부산대학교 공과대학 응용화학공학부)
  • Eun Young Lim (School of Chemical Engineering, Pusan National University) ;
  • Eunsol Lee (School of Chemical Engineering, Pusan National University) ;
  • Jin Hong Lee (School of Chemical Engineering, Pusan National University)
  • 투고 : 2024.06.05
  • 심사 : 2024.06.19
  • 발행 : 2024.08.10

초록

실리콘/탄소(SiC) 복합체는 실리콘의 높은 이론 용량과 탄소 소재의 높은 전기 전도성을 동시에 만족할 수 있어 실리콘 기반 음극의 상용화를 위한 새로운 음극 소재로서 주목받고 있다. 그러나 SiC 활물질의 반복적인 부피 변화에 따른 지속적인 전해질 소모와 용량 감소는 여전히 해결되어야 하는 문제로 여겨진다. 이러한 문제를 해결하기 위해 본 연구에서는 열적 가교 반응을 통해 네트워크 구조를 형성하는 4,4'-methylenebis(cyclohexyl isocyanate) (H12MDI) 기반의 수분산 폴리우레탄 바인더(HPUD)를 제안한다. 가교된 HPUD (CHPU)는 SiC 음극의 건조 공정 중 간단한 열처리를 통해서 가교제인 triglycidyl isocyanurate (TGIC)의 epoxy 고리 개환 반응을 활용하여 제조되었다. 뛰어난 기계적 특성 및 접착 특성을 가지는 CHPU 바인더를 사용한 SiC 음극은 우수한 율속 및 장기 수명 특성을 나타낼 뿐만 아니라, SiC 음극의 부피 팽창 또한 효과적으로 완화시키는 것으로 확인되었다. 본 연구 결과는 가교 구조를 가지는 환경친화적인 바인더가 다양한 실리콘 기반 음극에 활용될 수 있음을 시사한다.

Silicon and carbon composite (SiC) is considered one of the most promising anode materials for the commercialization of Si-based anodes, as it could simultaneously satisfy the high theoretical capacity of Si and the high electronic conductivity of carbon. However, SiC active material undergoes repeated volumetric changes during charge/discharge processes, leading to continuous electrolyte decomposition and capacity fading, which is still considered an issue that needs to be addressed. To solve this issue, we suggest a 4,4'-Methylenebis(cyclohexyl isocyanate) (H12MDI)-based waterborne polyurethane binder (HPUD), which forms a 3D network structure through thermal cross-linking reaction. The cross-linked HPUD (denoted as CHPU) was prepared using an epoxy ring-opening reaction of the cross-linker, triglycidyl isocyanurate (TGIC), via simple thermal treatment during the SiC anode drying process. The SiC anode with the CHPU binder, which exhibited superior mechanical and adhesion properties, not only demonstrated excellent rate and cycling performance but also alleviated the volume expansion of the SiC anode. This work implies that eco-friendly binders with cross-linked structures could be utilized for various Si-based anodes.

키워드

과제정보

본 연구는 부산대학교 기본연구지원사업(2년) 연구비로 이루어졌음

참고문헌

  1. N. Mahmood, T. Tang, and Y. Hou, Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective, Adv. Energy Mater., 6, 1600374 (2016).
  2. A. Nazir, H. T. Le, A. Kasbe, and C.-J. Park, Si nanoparticles confined within a conductive 2D porous Cu-based metal-organic framework (Cu3(HITP)2) as potential anodes for high-capacity Li-ion batteries, Chem. Eng. J., 405, 126963 (2021).
  3. W.-R. Liu, Z.-Z. Guo, W.-S. Young, D.-T. Shieh, H.-C. Wu, M.-H. Yang, and N.-L. Wu, Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive, J. Power Sources, 140, 139-144 (2005).
  4. P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao, W. Sun, and S. X. Dou, Recent progress on silicon-based anode materials for practical lithium-ion battery applications, Energy Storage Mater., 15, 422-446 (2018).
  5. Y. Yang, W. Yuan, W. Kang, Y. Ye, Q. Pan, X. Zhang, Y. Ke, C. Wang, Z. Qiu, and Y. Tang, A review on silicon nanowire-based anodes for next-generation high-performance lithiumion batteries from a material-based perspective, Sustain. Energy Fuels, 4, 1577-1594 (2020).
  6. B. Hertzberg, A. Alexeev, and G. Yushin, Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space, J. Am. Chem. Soc., 132, 8548-8549 (2010).
  7. L. Shi, C. Pang, S. Chen, M. Wang, K. Wang, Z. Tan, P. Gao, J. Ren, Y. Huang, H. Peng, and Z. Liu, Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes, Nano Lett., 17, 3681-3687 (2017).
  8. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano, 6, 1522-1531 (2012).
  9. Y. Yan, Z. Xu, C. Liu, H. Dou, J. Wei, X. Zhao, J. Ma, Q. Dong, H. Xu, Y. He, Z.-F. Ma, and X. Yang, Rational design of the robust janus shell on silicon anodes for high-performance lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 11, 17375-17383 (2019).
  10. L.-F. Cui, R. Ruffo, C. K. Chan, H. Peng, and Y. Cui, Crystallineamorphous core-shell silicon nanowires for high capacity and high current battery electrodes, Nano Lett., 9, 491-495 (2009).
  11. L. Hu, M. Jin, Z. Zhang, H. Chen, F. Boorboor Ajdari, and J. Song, Interface-adaptive binder enabled by supramolecular interactions for high-capacity Si/C composite anodes in lithium-ion batteries, Adv. Funct. Mater., 32, 2111560 (2022).
  12. J. H. Hwang, E. Kim, E. Y. Lim, W. Lee, J.-O. Kim, I. Choi, Y. S. Kim, D.-G. Kim, J. H. Lee, and J.-C. Lee, A multifunctional interlocked binder with synergistic in situ covalent and hydrogen bonding for high-performance Si anode in li-ion batteries, Adv. Sci., 10, 2302144 (2023).
  13. Z. H. Xie, M. Z. Rong, and M. Q. Zhang, Dynamically cross-linked polymeric binder-made durable silicon anode of a wide operating temperature Li-Ion battery, ACS Appl. Mater. Interfaces, 13, 28737-28748 (2021).
  14. J.-T. Li, Z.-Y. Wu, Y.-Q. Lu, Y. Zhou, Q.-S. Huang, L. Huang, and S.-G. Sun, Water Soluble Binder, an Electrochemical Performance Booster for Electrode Materials with High Energy Density, Adv. Energy Mater., 7, 1701185 (2017).
  15. M. T. Jeena, J.-I. Lee, S. H. Kim, C. Kim, J.-Y. Kim, S. Park, and J.-H. Ryu, Multifunctional molecular design as an efficient polymeric binder for silicon anodes in lithium-ion batteries, ACS Appl. Mater. Interfaces, 6, 18001-18007 (2014).
  16. B. Lestriez, S. Bahri, I. Sandu, L. Roue, and D. Guyomard, On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries, Electrochem. Commun., 9, 2801-2806 (2007).
  17. C. Gao, H. Zhang, P. Mu, R. Wu, X. Zhang, X. Chen, C. Sun, Q. Wang, and G. Cui, Hard-soft segment synergism binder facilitates the implementation of practical SiC600 electrodes, Adv. Energy Mater., 13, 2302411 (2023).
  18. J.-O. Kim, E. Kim, E. Y. Lim, T. Kwon, I.-J. Kim, J. Lee, J.-W. Ko, and J. H. Lee, Stress-dissipative elastic waterborne polyurethane binders for silicon anodes with high structural integrity in lithium-ion batteries, ACS Appl. Energy Mater., 7, 1629-1639 (2024).
  19. M.-G. Kim, K.-I. Jo, E. Kim, J.-H. Park, J.-W. Ko, and J. H. Lee, Preparation of polydimethylsiloxane-modified waterborne polyurethane coatings for marine applications, Polymers, 13, 4283 (2021).
  20. Y. Xiao, X. Fu, Y. Zhang, Z. Liu, L. Jiang, and J. Lei, Preparation of waterborne polyurethanes based on the organic solvent-free process, Green Chem., 18, 412-416 (2016).
  21. J. Lou, Z. Liu, L. Yang, Y. Guo, D. Lei, and Z. You, A new strategy of discretionarily reconfigurable actuators based on self-healing elastomers for diverse soft robots, Adv. Funct. Mater., 31, 2008328 (2021).
  22. X. Li, N. Mignard, M. Taha, F. Prochazka, J. Chen, S. Zhang, and F. Becquart, Thermoreversible supramolecular networks from poly(trimethylene carbonate) synthesized by condensation with triuret and tetrauret, Macromolecules, 52, 6585-6599 (2019).
  23. K. M. Saller, G. Hubner, and C. Schwarzinger, Introducing free carboxylic acid groups along polyester chains using dimethylolpropionic acid as diol component, Eur. Polym. J., 198, 112442 (2023).
  24. J. Datta, P. Kasprzyk, K. Blazek, and M. Wloch, Synthesis, structure and properties of poly(ester-urethane)s obtained using bio-based and petrochemical 1,3-propanediol and 1,4-butanediol, J. Therm. Anal. Calorim., 130, 261-276 (2017).
  25. F. Zou, P. Yue, X. Zheng, D. Tang, W. Fu, and Z. Li, Robust and superhydrophobic thiourethane bridged polysilsesquioxane aerogels as potential thermal insulation materials, J. Mater. Chem. A, 4, 10801-10805(2016).
  26. T. Zhang, B. Li, Z. Song, W. Jiang, S. Liu, R. Mao, Z. Jian, and F. Hu, Ten-minute synthesis of a new redox-active aqueous binder for flame-retardant Li-S batteries, Energy Environ. Mater., 7, e12572 (2024).
  27. J. Nam, E. Kim, R. K. K, Y. Kim, and T.-H. Kim, A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries, Sci. Rep., 10, 14966 (2020).
  28. Y. J. Kwon, J.-O. Kim, E. Vivek, E. Kim, S. H. Kim, T. Kwon, E. Lim, S. Chae, M. Park, Y. Eom, J.-H. Baik, J. H. Lee, and K. Y. Cho, A stress-adaptive interlinked 3D network binder for silicon anodes via tailored chemical bonds and conformation of functionalized poly(vinylidene fluoride) (PVDF) terpolymers, Chem. Eng. J., 479, 147860 (2024).
  29. J. Sourice, A. Quinsac, Y. Leconte, O. Sublemontier, W. Porcher, C. Haon, A. Bordes, E. D. Vito, A. Boulineau, S. J. S. Larbi, N. Herlin-Boime, and C. Reynaud, One-step synthesis of Si@C nanoparticles by laser pyrolysis: High-capacity anode material for lithium-ion batteries, ACS Appl. Mater. Interfaces, 7, 6637-6644 (2015).
  30. M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang, H. Qiu, Z. Chen, and G. Cui, An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes, Nano-Micro Lett., 14, 87 (2022).
  31. W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, and W.-S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries, J. Electrochem. Sci. Technol., 11, 1-13 (2020).
  32. S.-B. Kim, H. Kim, D.-H. Park, J.-H. Kim, J.-H. Shin, J.-S. Jang, S.-H. Moon, J.-H. Choi, and K.-W. Park, Li-ion diffusivity and electrochemical performance of Ni-rich cathode material doped with fluoride ions, J. Power Sources, 506, 230219 (2021).
  33. Y. Li, B. Jin, K. Wang, L. Song, L. Ren, Y. Hou, X. Gao, X. Zhan, and Q. Zhang, Coordinatively-intertwined dual anionic polysaccharides as binder with 3D network conducive for stable SEI formation in advanced silicon-based anodes, Chem. Eng. J., 429, 132235 (2022).
  34. L. Zhang, X. Jiao, Z. Feng, B. Li, Y. Feng, and J. Song, A nature-inspired binder with three-dimensional cross-linked networks for silicon-based anodes in lithium-ion batteries, J. Power Sources, 484, 229198 (2021).