DOI QR코드

DOI QR Code

Synthesis and Properties of Ionic Polyacetylene Composite from the In-situ Quaternization Polymerization of 2-Ethynylpyridine Using Iron (III) Chloride

염화 철(III)을 이용한 2-에티닐피리딘의 in-situ4차염화중합을 통한 이온형 폴리아세틸렌 복합체의 합성과 특성

  • Taehyoung Kim (Department of Chemistry, University of Minnesota) ;
  • Sung-Ho Jin (Department of Chemistry Education, Pusan National University) ;
  • Jongwook Park (Department of Chemical Engineering, Kyung Hee University) ;
  • Yeong-Soon Gal (Department of Fire Safety, Kyungil University)
  • 김태형 (미네소타대 화학과) ;
  • 진성호 (부산대학교 화학교육학과) ;
  • 박종욱 (경희대학교 화학공학과) ;
  • 제갈영순 (경일대학교 소방방재학과)
  • Received : 2024.06.07
  • Accepted : 2024.06.18
  • Published : 2024.08.10

Abstract

An ionic conjugated polymer-iron (III) chloride composite was prepared via in-situ quaternization polymerization of 2-ethynylpyridine (2EP) using iron (III) chloride. Various instrumental methods revealed that the chemical structure of the resulting conjugated polymer (P2EP)-iron (III) chloride composite has the conjugated backbone system having the designed pyridinium ferric chloride complexes. The polymerization mechanism was assumed to be that the activated triple bond of 2-ethynylpyridinium salt, formed at the first reaction step, is easily susceptible to the step-wise polymerization, followed by the same propagation step that contains the propagating macroanion and monomeric 2-ethynylpyridinium salts. The electro-optical and electrochemical properties of the P2EP-FeCl3 composite were studied. In the UV-visible spectra of P2EP-FeCl3 composite, the absorption maximum values were 480 nm and 533 nm, and the PL maximum value was 598 nm. The cyclic voltammograms of the P2EP-FeCl3 composite exhibited irreversible electrochemical behavior between the oxidation and reduction peaks. The kinetics of the redox process of composites were found to be very close to a diffusion-controlled process from the plot of the oxidation current density versus the scan rate.

염화 철(III)을 이용한 2-에티닐피리딘의 in-situ 4차염화 중합을 통하여 이온성 폴리아세틸렌-염화 철(III) 복합체를 용이하게 합성하였다. 합성한 폴리아세틸렌-염화 철(III) 복합체의 구조를 여러 가지 분석장비를 통해 확인한 결과 설계한 염화 철(III)-피리디늄 치환기를 갖는 공액구조 고분자가 생성되었음을 확인할 수 있었다. 본 중합의 메커니즘은 첫 번째 단계에서 형성된 에티닐피리디늄 염의 중합반응이 개시되고 전파되는 것으로 분석되었다. P2EP-FeCl3 복합체의 전기 광학 및 전기화학적 특성을 연구하였다. P2EP-FeCl3 복합체의 UV-visible 스펙트럼에서 흡수 최대값은 480 nm 및 533 nm이었고 PL 최대값은 598 nm로 나타났다. P2EP-FeCl3 복합체의 순환 전압전류 특성 측정결과 산화 피크와 환원 피크가 비가역적인 전기화학적 거동을 보였으며, 복합체의 산화 환원 과정의 동역학은 스캔 속도 대비 산화 전류 값의 도표부터 확산 제어 프로세스에 가까운 것으로 확인되었다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant (RS-2023-00243822) of the Ministry of Science and ICT. This work was also supported by the research fund of Kyungil University. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03048004).

References

  1. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and Alan G. MacDiarmid, Electrical conductivity in doped polyacetylene, Phys. Rev. Lett., 39, 1098 (1977).
  2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Light-emitting diodes based on conjugated polymers, Nature, 347, 539-541 (1990).
  3. S. H. Jin, M. Y. Kim, J. Y. Kim, K. Lee, and Y. S. Gal, High-efficiency poly(p-phenylenevinylene)-based copolymers containing an oxadiazole pendant group for light-emitting diodes, J. Am. Chem. Soc., 126, 2474-2480 (2004).
  4. A. R. Murphy and J. M. J. Frechet, Organic semiconducting oligomers for use in thin film transistors, Chem. Rev., 107, 1066- 1096 (2007).
  5. S. Inal, J. Rivnay, A. O. Suiu, G. B. Malliaras, and I. McCulloch, Conjugated polymers in bioelectronics, Acc. Chem. Res., 51, 1368- 1376 (2018).
  6. J. Park, S. Shin, Y. Yoon, J. Park, and J. Bae, Preparation of hybrid carbon from conducting polymer-coconut shell composites and their electrochemical properties, Appl. Chem. Eng., 35, 37-41 (2023).
  7. K. Kranthiraja, H. Kim, J. Lee, U. K. Aryal, S. S. Reddy, R. D. Gayathri, T. Gokulnath, and S. H. Jin, Side chain functionalization of conjugated polymer on the modulation of photovoltaic properties of fullerene and non-fullerene organic solar cells, Macromol. Res., 31, 897-905 (2023).
  8. S. H. Oh, J. Yoo, and J. Lee, Comparative study of physical doping and electrochemical doping in polymer thin-film transistors, Macromol. Res., 31, 1189-1197 (2023).
  9. N. Nasajpour-Esfahani, D. Dastan, A. Alizadeh, P. Shirvanisamani, M. Rozati, E. Ricciardi, B. Lewis, A. Aphale, and D. Toghraie, A critical review on intrinsic conducting polymers and their applications, J. Ind. Eng. Chem., 125, 14-37 (2023).
  10. J. Park, L. Chetan, H. Kim, J. S. Jee, Y. S. Gal, and S. H. Jin, New pyrazine-based π-conjugated polymer for dopant-free perovskite solar cell, Macromol. Res., 32, 505-513 (2024).
  11. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Photoinduced electron transfer from a conducting polymer to Buckminsterfullerene, Science, 258, 1474-1476 (1992).
  12. Md. A. Karim, Y. R. Cho, J. S. Park, S. C. Kim, H. J. Kim, J. W. Lee, Y. S. Gal, and S. H. Jin, Novel fluorene-based functional 'click polymers' for quasi-solid-state dye-sensitized solar cells, Chem. Commun., 2008, 1929-1931 (2008).
  13. E. K. Solak and E. Irmak, Advances in organic photovoltaic cells: A comprehensive review of materials, technologies, and performance, RSC Adv., 13, 12244-12269 (2023).
  14. B. Jun, C. H. Lee, and S. U. Lee, Strain-induced carrier mobility modulation in organic semiconductors, J. Ind. Eng. Chem., 107, 137-144 (2022).
  15. L. Cao, C. Ren, and T. Wu, Recent advances in doped organic field-effect transistors: Mechanism, influencing factors, materials, and development directions, J. Mater. Chem. C, 11, 3428-3447 (2023).
  16. D. Zhang, C. Li, G. Zhang, J. Tian, and Z. Liu, Phototunable and photopatternable polymer semiconductors, Acc. Chem. Res., 57, 625-635 (2024).
  17. Y. G. Ko, W. Kwon, D. M. Kim, K. Kim, Y. S. Gal, and M. Ree, Electrically permanent memory characteristics of an ionic conjugated polymer, Polym. Chem., 3, 2028-2033 (2012).
  18. K. Spychalska, D. Zajac, S. Baluta, K. Halicka, and J. Cabaj, Functional polymers structures for (bio)sensing application-A review, Polymers, 12, 1154 (2020).
  19. W. He, J. Duan, H. Liu, C. Qian, M. Zhu, W. Zhang, and Y. Liao, Conjugated microporous polymers for advanced chemical sensing applications, Prog. Polym. Sci., 148, 101770 (2024)
  20. M. Fathabadi and S. Zhao, Fully epitaxial semiconductor photoelectrode for UV-VIS dual-band photodetection, ACS Photonics, 10, 2825-2831 (2023)
  21. T. Masuda, Substituted polyacetylenes: Synthesis, properties, and functions, Polym. Rev., 57, 1-14 (2017).
  22. X. Wang, J. Z. Sun, and B. Z. Tang, Poly(disubstituted acetylene)s: Advances in polymer preparation and materials application, Prog. Polym. Sci., 79, 98-120 (2018).
  23. S. K. Choi, Y. S. Gal, S. H. Jin, and H. K. Kim, Poly(1,6-heptadiyne)-based materials by metathesis polymerization, Chem. Rev., 2000, 1645-1681 (2000).
  24. D. Pasini and D. Takeuchi, Cyclopolymerizations: Synthetic tools for the precision synthesis of macromolecular architectures, Chem. Rev., 118, 8983-9057 (2018).
  25. Y. S. Gal, H. N. Cho, and S. K. Choi, Polymerization of 1-chloro-2-thienylacetylene by WCl6- and MoCl5-based catalysts, Polymer(Korea), 9, 361-367 (1985).
  26. Y. H. Kim. Y. S. Gal, E. Y. Kim, and S. K. Choi, Cyclopolymerization of dipropargylsilanes by transition metal catalysts, Macromolecules, 21, 1991-1995 (1988).
  27. Y. S. Gal and S. H. Jin, Synthesis and characterization of a polyacetylene derivative containing amine functional groups, Mol. Cryst. Liq. Cryst., 568, 46-51 (2012).
  28. M. S. Freund and B. Deore, Self-Doped Conducting Polymers, 1st ed., 6-33, Wiley, NY, USA (2007).
  29. S. E. Herrera, M. L. Agazzi, E. Apuzzo, M. L. Cortez, W. A. Marmisolle, M. Tagliazucchi, and O. Azzaroni, Polyelectrolyte-multivalent molecule complexes: Physicochemical properties and applications, Soft Mater., 19, 2013-2041 (2023).
  30. M. T. Record Jr, W. Zhang, and C. F. Anderson, Analysis of effects of salts and uncharged solutes on protein and nucleic acid equilibria and processes: A practical guide to recognizing and interpreting polyelectrolyte effects, Hofmeister effects, and Osmotic effects of salts, Adv. Protein Chem., 51, 281-353 (1998).
  31. J. M. C. Puguan and H. Kim, Ionene copolymer electrolyte obtained from cyclo-addition of di-alkyne and di-azide monomers for solid-state smart glass windows, J. Ind. Eng. Chem., 74, 1-6 (2019).
  32. S. G. Laishevkina, O. D. Iakobson, E. M. Ivan'kova, B. M. Shabsel's, and N. N. Shevchenko, Influence of the structure of sulfonic polyelectrolyte matrices on the adsorption of Cu2+ ions, Colloid J., 86, 86-97 (2024).
  33. M. R. Pinto and K. S. Schanze, Conjugated polyelectrolytes: Synthesis and applications, Synthesis, 2002, 1293-1309 (2002).
  34. Y. S. Gal, A noble conjugated polyelectrolyte: A facile synthetic method of poly(propynyl triphenylphosponium bromide) using transition metal catalysts, J. Chem. Soc., Chem. Commun., 1994, 327-328 (1994).
  35. D. C. Choi, S. H. Kim, J. H. Lee, H. N. Cho, and S. K. Choi, A new class of conjugated ionic polyacetylenes. 3. cyclopolymerization of alkyldipropargyl(4-sulfobutyl)ammonium betaines by transition metal catalysts, Macromolecules, 30, 176-181 (1997).
  36. C. I. Simionescu, S. Dumitrescu, V. Percec, and I. R. Diaconu, Polymerization of acetylene derivatives. Anion-radical salts of TCNQ with poly(vinyl- and ethynylpyridines, Mater. Plast, 15, 69-74 (1978).
  37. S. Subramanyam and A. Blumstein, Conjugated ionic polyacetylenes. 3. polymerization of ethynylpyridinium salts, Macromolecules, 24, 2668-2674 (1991).
  38. A. Blumstein and L. Samuelson, Highly conjugated polyacetylenes: Thin-film processing and potential applications, Adv. Mater., 10, 173-176 (1998).
  39. Y. S. Gal and S. H. Jin, A self-doped ionic conjugated polymer: Poly(2-ethynylpyridinium-N-benzoylsulfonate) by the activated polymerization of 2-ethynylpyridine with ring-opening of 2-sulfobenzoic acid cyclic anhydride, Bull. Korean Chem. Soc., 25, 777-778 (2004).
  40. Y. S. Gal, S. H. Jin, K. T. Lim, S. H. Kim, and K. Koh, Synthesis and electro-optical properties of self-doped ionic conjugated polymers: Poly(2-ethynyl-N-(4-sulfobutyl)pyridinium betaine), Curr. Appl. Phys., 5, 38-42 (2005).
  41. Y. S. Gal, S. H. Jin, Y. I. Park, J. W. Park, W. S. Lyoo, and K. T. Lim, Synthesis and characterization of an ionic polyacetylene by the activated polymerization of 2-ethynylpyridine with the ringopening of propiolactone, Syn. Met., 161, 445-449 (2011)
  42. Y. S. Gal, W. C. Lee, and S. K. Choi, A water-soluble pyridine-containing polyacetylene: poly(2-ethynylpyridinum bromide) having propargyl side chain, Bull. Korean Chem. Soc., 18, 265 (1997).
  43. Y. S. Gal, S. H. Jin, J. W. Park, and K. T. Lim, Synthesis and characterization of an ionic conjugated polymer: Poly[2-ethynyl-N-(2-thiophenecarbonyl)pyridinium chloride], J. Polym. Sci.: Part A: Polym. Chem., 47, 6153-6162 (2009).
  44. T. Kim, S. H. Jin, J. W. Park, K. T. Lim, S. Y. Kim, and Y. S. Gal, Polyacetylene polyelectrolyte via the non-catalyst polymerization of 2-ethynylpyridine using heptafluorobenzyl iodide, J. Ind. Eng. Chem., 87, 130-135 (2020).
  45. T. Kim, S. Y. Kim, S. H. Jin, J. Park, K. T. Lim, and Y. S. Gal, Polyacetylene-based polyelectrolyte by the quaternization polymerization of 2-ethynylpyridine using (6-bromo-1-oxohexyl)ferrocene, Mol. Cryst. Liq. Cryst., 761, 104-111 (2023).
  46. H. Liu, D. W. Kim, A. Blumstein, J. Kumar, and S. K. Tripathy, Nanocomposite derived from intercalative spontaneous polymerization of 2-ethynylpyridine within layered aluminosilicate:  Montmorillonite, Chem. Mater., 13, 2756 (2001).
  47. K. M. Kim, J. H. Lim, N. Y. Jang, and S. R. Kim, Synthesis of hybrid polyacetylene gels using octafunctional POSS initiator, Macromol. Symp., 249-250, 562-567 (2007).
  48. W. Lee, R. S. Mane, S. K. Min, T. H. Yoon, S. H. Han, and S. H. Lee, Nanocrystalline CdS-water-soluble conjugated polymers: High performance photoelectrochemical cells, Appl. Phys. Lett., 90, 263503 (2007).
  49. Y. Mao, H. Peng, H. Zhao, W. Z. Yuan, A. Qin, Y. Yu, M. Faisal, Z. Xiao A, J. Z. Sun, and B. Z. Tang, Composites of quaternized poly(pyridylacetylene) and silver nanoparticles: Nanocomposite preparation, conductivity and photoinduced patterning, J. Mater. Chem., 21, 13627-13633 (2011).
  50. S. Nam, J. Seo, M. Song, H. Kim, M. Ree, Y. S. Gal, D. D. C. Bradley, and Y. Kim, Polyacetylene-based polyelectrolyte as a universal interfacial layer for efficient inverted polymer solar cells, Org. Electron., 48, 61-67 (2017).
  51. U. K. Aryal, N. Chakravarthi, H. Y. Park, H. Bae, S. H. Jin, and Y. S. Gal, Highly efficient polyacetylene-based polyelectrolytes as cathode interfacial layers for organic solar cell applications, Org. Electron., 53, 265-272 (2018).
  52. Y. S. Gal, H. N. Cho, S. K. Kwon, and S. K. Choi, Polymerization of 2-ethynylpyridine by transition metal chloride and organoaluminum compounds, Polymer(Korea), 12, 30-36 (1988).
  53. S. Subramanyam, A. Blumstein, and K. P. Li, Conjugated ionic polyacetylenes. 4. Polymerization of ethynylpyridines with bromine, Macromolecules, 25, 2065-2069 (1992).
  54. T. L. Gui, S. H. Jin, J. W. Park, K. T. Lim, S. Y. Kim, and Y. S. Gal, Synthesis and electro-optical properties of conjugated ionic polymers, Mat. Sci. Eng. C, 24, 217-220 (2004).
  55. Y. S. Gal and S. K. Choi, Electrical conductivity and spectral properties of iodine-doped poly(2-ethynylpyridine), J. Appl. Polym. Sci., 50, 601-606 (1993).
  56. Y. S. Gal, H. N. Suh, W. C. Lee, S. H. Jin, J. W. Park, W. S. Lyoo, S. Y. Shim, and K. T. Lim, Electro-optical and electrochemical properties of poly(2-ethynylpyridine), Mol. Cryst. Liq. Cryst., 491, 348-355 (2008).
  57. A. J. Bard and L. R. Faulkner, Electroactive layers and modified electrodes, Electrochemical Methods, 2nd ed., 591, Wiley, NY, USA (2001).
  58. J. W. Park, J. H. Lee, J. M. Ko, H. N. Cho, and S. K. Choi, Synthesis and electrochemical properties of poly(1,6-heptadiyne) derivatives containing a carbazole moiety, J. Polym. Sci., Part A: Polym. Chem., 32, 2789-2792 (1994).