과제정보
이 논문은 2019년 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(Grant No. NRF-2019R1I1A3A01061508)에 의해 수행하였음.
참고문헌
- R. S. Fisher, W. V. E. Roas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel Jr, Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE), Epilepsia, 46, 470-472 (2005). https://doi.org/10.1111/j.0013-9580.2005.66104.x
- P. N. Banerjee, D. Filippi, and W. A. Hauser, The descriptive epidemiology of epilepsy-A review, Epilepsy Res., 85, 31-45 (2009). https://doi.org/10.1016/j.eplepsyres.2009.03.003
- R. S. Fisher, J. H. Corss, J. A. French, N. Higurashi, E. Hirsch, F. E. Jansen, L, Lagar, S. L. Moshe, J. Peltola, E. R. Perez, I. E. Scheffer, and S. M. Zuberi, Operational classification of seizure types by the International League Against Epilepsy: PositioN Paper of the ILAE commission for classification and terminology, Epilepsia, 58, 522-530, (2017). https://doi.org/10.1111/epi.13670
- R. Ama, M. Mendes, J. Sousa, A. Pais, A. Falcao, A. Fortuna, and C. Vitorino, Rethinking carbamazepine oral delivery using polymer-lipid hybrid nanoparticles, Int. J. Pharm., 554, 352-365 (2019). https://doi.org/10.1016/j.ijpharm.2018.11.028
- R. L. Macdonald and K. M. Kelly, Antiepileptic drug mechanisms of action, Epilepsia, 36, S2-S12 (1995). https://doi.org/10.1111/j.1528-1157.1995.tb05996.x
- G. Powell, M. Saunders, A. Rigby, and A. G. Marson, Immediate- release versus controlled-release carbamazepine in the treatment of epilepsy, Cochrane Database Syst. Rev., 12 (2016).
- H. Jung, M. K. Kim, J. Y. Lee, S. W. Choi, and J. Kim, Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery, Adv. Funct. Mater., 30, 2004407 (2020).
- M. R. Prausnitz, S. Mitragotri, and R. Langer, Current status and future potential of transdermal drug delivery, Nat. Rev. Drug Discov., 3, 115-124 (2004). https://doi.org/10.1038/nrd1304
- H. Lee, C. Song, Y. S. Hong, M. S. Kim, H. R. Cho, T. Kang, K. Shin, S. H. Choi, T. Hyeon, and D. H. Kim, Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module, Sci. Adv., 3, e1601314 (2017).
- V. Sessini, M. P. Arrieta, A. Fernandez-Torres, and L. Peponi, Humidity-activated shape memory effect on plasticized starch-based biomaterials, Carbohydr. Polym., 179, 93-99 (2018). https://doi.org/10.1016/j.carbpol.2017.09.070
- Y. Zhu, C. Romain, and C. K. Williams, Sustainable polymers from renewable resources, Nature, 540, 354-362 (2016). https://doi.org/10.1038/nature21001
- P. V. F. Lemos, H. R. Marcelino, L. G. Cardoso, C. O. de Souza, and J. I. Druzian, Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials, Int. J. Biol. Macromol., 184, 218-234 (2021). https://doi.org/10.1016/j.ijbiomac.2021.06.077
- D. Thomas, N. Mathew, and M. S. Nath, Starch modified alginate nanoparticles for drug delivery application, Int. J. Biol. Macromol., 173, 277-284 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.227
- D. G. Stevenson, J. Jane, and G. E. Inglett, Physicochemical properties of pin oak (Quercus palustris Muenchh.) acorn starch, Starch/Starke, 58, 553-560, (2006). https://doi.org/10.1002/star.200600533
- M. G. Cappai, G. A. Alesso, G. Nieddu, M. Sannac, and W. Pinna, Electron microscopy and composition of raw acorn starch in relation to in vivo starch digestibility, Food Funct., 4, 917-922, (2013). https://doi.org/10.1039/c3fo60075k
- M. Saleh, R. Ajo, K. Al-Ismail, and G. Ondier, Effects of hydrocolloids on acorn starch physical properties, Starch/Starke, 68, 1169-1179 (2016). https://doi.org/10.1002/star.201500304
- Y. H. Yun and S. D. Yoon, Effect of amylose contents of starches on physical properties and biodegradability of starch/PVA-blended films, Polym. Bull., 64, 553-568 (2010). https://doi.org/10.1007/s00289-009-0158-4
- R. Gao, X. Su, X. He, L. Chen, and Y. Zhang, Preparation and characterisation of core-shell CNTs@ MIPs nanocomposites and selective removal of estrone from water samples, Talanta, 83, 757-764 (2011). https://doi.org/10.1016/j.talanta.2010.10.034
- J. Siepmann and N. A. Peppas, Higuchi equation: Derivation, applications, use and misuse, Int. J. Pharm., 418, 6-12 (2011). https://doi.org/10.1016/j.ijpharm.2011.03.051
- K. J. Kim, M. J. Hwang, W. G. Shim, Y. N. Yoon, and S. D. Yoon, Sustained drug release behavior of captopril-incorporated chitosan/carboxymethyl cellulose biomaterials for antihypertensive therapy, Int. J. Biol. Macromol., 255, 128087 (2024).
- J. Siepmann and N. A. Peppas, Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC), Adv. Drug Deliv. Rev., 64, 163-174 (2012). https://doi.org/10.1016/j.addr.2012.09.028
- R. Nair, A. C. K. Kumar, V. K. Priya, C. M. Yadav, and P. Y. Raju, Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine, Lipids Health Dis., 11, 72 (2012).
- S. Kumari and R. P. Singh, Glycolic acid functionalized chitosan-Au-Fe3O4 hybrid nanoparticle based nanohybrid scaffold for drug delivery, Int. J. Biol. Macromol., 54, 244-249 (2013). https://doi.org/10.1016/j.ijbiomac.2012.12.001
- A. Pourfarzad, Z. Ahmadian and M. B. Habibi-Najafi, Interactions between polyols and wheat biopolymers in a bread model system fortified with inulin: A Fourier transform infrared study, Heliyon, 4, e01017 (2018).
- X. Liu, L. Zhu, X. Gao, Y. Wang, H. Lu, Y. Tang, and J. Li, Magnetic molecularly imprinted polymers for spectrophotometric quantification of curcumin in food, Food Chem., 202, 309-315 (2016). https://doi.org/10.1016/j.foodchem.2016.02.015
- S. Sakkara, D. Nataraj, K. Venkatesh, Y. Xu, J. H. Patil, and N. Reddy, Effect of pH on the physicochemical properties of starch films, J. Appl. Polym. Sci., 137, 48563 (2020).