DOI QR코드

DOI QR Code

Characterization of Carbamazepine-Imprinted Acorn Starch/PVA-Based Biomaterials

카바마제핀 각인 도토리 전분/PVA 기반 바이오소재의 특성

  • Kyeong-Jung Kim (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Ji-Hoon Kang (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Bo-Gyeong Kim (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Min‑Jin Hwang (Department of Environmental System Engineering, Chonnam National University) ;
  • Soon-Do Yoon (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • 김경중 (전남대학교 공학대학 화공생명공학과) ;
  • 강지훈 (전남대학교 공학대학 화공생명공학과) ;
  • 김보경 (전남대학교 공학대학 화공생명공학과) ;
  • 황민진 (전남대학교 공학대학 환경시스템공학과) ;
  • 윤순도 (전남대학교 공학대학 화공생명공학과)
  • Received : 2024.04.01
  • Accepted : 2024.04.16
  • Published : 2024.06.10

Abstract

In this study, carbamazepine (CBZ) imprinted starch/PVA-based biomaterials were prepared by the casting method and UV irradiation, and their physicochemical properties, CBZ adsorption ability, and release properties were investigated. The surface properties of the prepared biomaterials were characterized using FE-SEM, while the stability of CBZ under UV irradiation and the functional groups of the biomaterials were characterized using FT-IR analysis. The adsorption properties of CBZ on the biomaterials were evaluated by binding isotherm and Scatchard plot. Results indicate that CBZ imprinted biomaterials possess a specific binding site of CBZ. To evaluate the applicability of the transdermal drug delivery system, the release properties of CBZ from prepared biomaterials using various pH buffers and artificial skin at 36.5 ℃ were investigated. Results indicated that the CBZ release at high pH was faster than at low pH. In addition, CBZ was released continuously for 12 h in the artificial skin test. The drug release mechanism of CBZ followed a pseudo-Fickian diffusion mechanism in buffer solution, whereas the release from artificial skin exhibited a non-Fickian diffusion mechanism.

본 연구에서 carbamazepine (CBZ) 각인 도토리 전분(acorn starch, AS)/PVA 기반 바이오소재를 casting method와 UV 조사를 이용하여 제조하고 물리·화학적 특성, CBZ 흡착 및 방출 특성을 조사하였다. 제조한 바이오소재의 표면 특성은 FE-SEM을 통해 확인하였고, UV 조사에 따른 CBZ의 안정성과 바이오소재 작용기는 FT-IR 분석을 이용하였다. CBZ에 대한 바이오소재의 흡착 특성은 binding isotherm 및 Scatchard plot으로 평가하였고 이를 통해 CBZ 각인 바이오소재에 CBZ 결합 부위가 존재하는 것을 확인하였다. 경피 약물 전달 시스템의 응용 가능성을 평가하기 위하여 36.5 ℃에서 다양한 pH의 완충용액과 인공피부를 이용해 제조한 바이오소재의 CBZ 방출 특성을 조사하였다. 이 결과, CBZ는 pH 가 증가할수록 빠른 방출 속도를 보였으며, 인공피부 테스트에서 12 h 동안 지속적으로 방출되었다. 또한, 수학적 모델을 적용시킨 결과, 완충용액에서 CBZ 방출 메커니즘은 pseudo-Fickian diffusion 메커니즘을 따랐고 인공피부에서 non-Fickian diffusion 메커니즘을 따르는 것으로 평가되었다.

Keywords

Acknowledgement

이 논문은 2019년 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(Grant No. NRF-2019R1I1A3A01061508)에 의해 수행하였음.

References

  1. R. S. Fisher, W. V. E. Roas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel Jr, Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE), Epilepsia, 46, 470-472 (2005).
  2. P. N. Banerjee, D. Filippi, and W. A. Hauser, The descriptive epidemiology of epilepsy-A review, Epilepsy Res., 85, 31-45 (2009).
  3. R. S. Fisher, J. H. Corss, J. A. French, N. Higurashi, E. Hirsch, F. E. Jansen, L, Lagar, S. L. Moshe, J. Peltola, E. R. Perez, I. E. Scheffer, and S. M. Zuberi, Operational classification of seizure types by the International League Against Epilepsy: PositioN Paper of the ILAE commission for classification and terminology, Epilepsia, 58, 522-530, (2017).
  4. R. Ama, M. Mendes, J. Sousa, A. Pais, A. Falcao, A. Fortuna, and C. Vitorino, Rethinking carbamazepine oral delivery using polymer-lipid hybrid nanoparticles, Int. J. Pharm., 554, 352-365 (2019).
  5. R. L. Macdonald and K. M. Kelly, Antiepileptic drug mechanisms of action, Epilepsia, 36, S2-S12 (1995).
  6. G. Powell, M. Saunders, A. Rigby, and A. G. Marson, Immediate- release versus controlled-release carbamazepine in the treatment of epilepsy, Cochrane Database Syst. Rev., 12 (2016).
  7. H. Jung, M. K. Kim, J. Y. Lee, S. W. Choi, and J. Kim, Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery, Adv. Funct. Mater., 30, 2004407 (2020).
  8. M. R. Prausnitz, S. Mitragotri, and R. Langer, Current status and future potential of transdermal drug delivery, Nat. Rev. Drug Discov., 3, 115-124 (2004).
  9. H. Lee, C. Song, Y. S. Hong, M. S. Kim, H. R. Cho, T. Kang, K. Shin, S. H. Choi, T. Hyeon, and D. H. Kim, Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module, Sci. Adv., 3, e1601314 (2017).
  10. V. Sessini, M. P. Arrieta, A. Fernandez-Torres, and L. Peponi, Humidity-activated shape memory effect on plasticized starch-based biomaterials, Carbohydr. Polym., 179, 93-99 (2018).
  11. Y. Zhu, C. Romain, and C. K. Williams, Sustainable polymers from renewable resources, Nature, 540, 354-362 (2016).
  12. P. V. F. Lemos, H. R. Marcelino, L. G. Cardoso, C. O. de Souza, and J. I. Druzian, Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials, Int. J. Biol. Macromol., 184, 218-234 (2021).
  13. D. Thomas, N. Mathew, and M. S. Nath, Starch modified alginate nanoparticles for drug delivery application, Int. J. Biol. Macromol., 173, 277-284 (2021).
  14. D. G. Stevenson, J. Jane, and G. E. Inglett, Physicochemical properties of pin oak (Quercus palustris Muenchh.) acorn starch, Starch/Starke, 58, 553-560, (2006).
  15. M. G. Cappai, G. A. Alesso, G. Nieddu, M. Sannac, and W. Pinna, Electron microscopy and composition of raw acorn starch in relation to in vivo starch digestibility, Food Funct., 4, 917-922, (2013).
  16. M. Saleh, R. Ajo, K. Al-Ismail, and G. Ondier, Effects of hydrocolloids on acorn starch physical properties, Starch/Starke, 68, 1169-1179 (2016).
  17. Y. H. Yun and S. D. Yoon, Effect of amylose contents of starches on physical properties and biodegradability of starch/PVA-blended films, Polym. Bull., 64, 553-568 (2010).
  18. R. Gao, X. Su, X. He, L. Chen, and Y. Zhang, Preparation and characterisation of core-shell CNTs@ MIPs nanocomposites and selective removal of estrone from water samples, Talanta, 83, 757-764 (2011).
  19. J. Siepmann and N. A. Peppas, Higuchi equation: Derivation, applications, use and misuse, Int. J. Pharm., 418, 6-12 (2011).
  20. K. J. Kim, M. J. Hwang, W. G. Shim, Y. N. Yoon, and S. D. Yoon, Sustained drug release behavior of captopril-incorporated chitosan/carboxymethyl cellulose biomaterials for antihypertensive therapy, Int. J. Biol. Macromol., 255, 128087 (2024).
  21. J. Siepmann and N. A. Peppas, Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC), Adv. Drug Deliv. Rev., 64, 163-174 (2012).
  22. R. Nair, A. C. K. Kumar, V. K. Priya, C. M. Yadav, and P. Y. Raju, Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine, Lipids Health Dis., 11, 72 (2012).
  23. S. Kumari and R. P. Singh, Glycolic acid functionalized chitosan-Au-Fe3O4 hybrid nanoparticle based nanohybrid scaffold for drug delivery, Int. J. Biol. Macromol., 54, 244-249 (2013).
  24. A. Pourfarzad, Z. Ahmadian and M. B. Habibi-Najafi, Interactions between polyols and wheat biopolymers in a bread model system fortified with inulin: A Fourier transform infrared study, Heliyon, 4, e01017 (2018).
  25. X. Liu, L. Zhu, X. Gao, Y. Wang, H. Lu, Y. Tang, and J. Li, Magnetic molecularly imprinted polymers for spectrophotometric quantification of curcumin in food, Food Chem., 202, 309-315 (2016).
  26. S. Sakkara, D. Nataraj, K. Venkatesh, Y. Xu, J. H. Patil, and N. Reddy, Effect of pH on the physicochemical properties of starch films, J. Appl. Polym. Sci., 137, 48563 (2020).