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GENERALIZATION OF THE BUZANO’S INEQUALITY
AND NUMERICAL RADIUS INEQUALITIES

VUK STOJILJKOVIC* AND MEHMET GURDAL

ABSTRACT. Motivated by the previously reported results, this work at-
tempts to provide fresh refinements to both vector and numerical radius in-
equalities by providing a refinement to the well known Buzano’s inequality
which as a consequence yielded another refinement of the Cauchy-Schwartz
(CS) inequality. Utilizing the new refinements of the Buzano’s and Cauchy-
Schwartz inequalities, we proceed to obtain various vector and numerical
radius type inequalities. Methods used in the paper are standard for the
operator theory inequality topics.
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1. Introduction

Let B(9) denote the €*-algebra of all bounded linear operators on a complex
Hilbert space $) with inner product (.,.). For Q € B(9), let ||Q|| denote the the
usual operator norm of . Numerical radius is defined as usual, as a supremum
on the unit sphere of the quadratic form. Various properties of such mapping
are well known, interested readers are referenced to [1, 4, 5, 6, 8, 13, 21, 23, 24,
27, 28, 29| for more information. It is well known that w(.) forms a norm on
B($) which is equivalent with the usual operator norm

9] = sup (Qz,92)2,
lzl=1
for Q € B($H). In particular, the following sharp inequality holds
1
5 191l < w(Q) < [19] - (1)
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In [22], Kittaneh substantially improved the upper bound in (1) by showing that
if O € B(H), then

1 | 3
w@) < Lilal+ 1270l < 3 (121 + 27 F) @

Furthermore, Kittaneh et al. [12] obtained inequalities for one operator which
are as follows:

|2hs 2h(1—s)

1
u'@) < 5o

3)

+ |37
and
w?(Q) < [[s |3l + (1= ) 37"

where J € B(9),0<s<1,and h > 1.
Recently, Stojiljkovi¢ and Dragomir obtained the following refinement with
respect to the mapping A, which is as follows.

, (4)

w(@) < B0 oy jaran|| 4 AL oy gy 4 jaren)|

1 _
< = H|D|2hk n |5:1*|2(1 h)

)

fork >2,he0,1], Q € B(H) and A as defined in [30]. For further information,
consult the paper from which the result is given [30].

However, Berezin transforms have been extensively applied in the field of
reproducing kernel Hilbert spaces, addressing various problems. In their study
of the boundedness of operators on reproducing kernel Hilbert spaces, Chalendar
et al. [9] looked at more generic operators and investigated the Berezin symbols
of their unitary orbits. Bhunia et al. [7] introduced a new norm, the A-Berezin
norm, for the space of all bounded linear operators defined on a reproducing
kernel Hilbert space, which extends the Berezin radius and Berezin norm. For
further information on Berezin transforms, refer to [14, 15, 16, 17, 18, 19, 20, 31].

2. Preliminaries

We begin our section with stating one of the most influential inequalities.

Lemma 2.1. (Hélder Mc-Carty inequality [25]). Let Q be a positive bounded
linear operator and let x be any unit vector, then the following inequalities holds:

(Qu,2)" < (Q"x,z) forr >1, (5)
(Q"z,z) < (Qu,x)" for 0 <r <1 (6)
The next result is the well-known Buzano’s inequality.

Lemma 2.2. Let x,y,¢ € $ with ||¢|| = 1. Then we have

(2, e){e, )| < %(Hl‘ll 1yl + [z, y))- (7)
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Lemma 2.3. ([2]) Let f be a non-negative convex function on [0,4+00) and
0Q,B € B(H) be positive operators. Then

f<11;%)HS f(D);f(%)H. ®)
Lemma 2.4. ([11]) Let Q,B € B($) and r > 1, then
W (°9) < |12 + B 9)
Lemma 2.5. ([10, eq. 31]) Let Q,B,¢,D € B(H). Then we have
|peBal® < |2* B 9| | e o (10)

Lemma 2.6. ([30])Let I,3 € $ and let k > 1. Let J be a set such that (0,1) C
J. Let A be a mapping such that A : J — R, such that the following holds
A(k) + A(1 — k) = 1. Then the following inequality holds

k k k k
(L 302 < A I 13117+ A = m) I3 I I3l < ™ 0™ (11)

3. Main results

Our initial outcome is a Lemma that plays a crucial role in shaping the sub-
sequent results.

Lemma 3.1. Let l,3,¢ € H such that |je] =1 and let k > 1. Let J be a set such
that (0,1) € J C R. Let A be a mapping such that A : J — RT, such that the
following holds A(k) + A(1 — k) = 1. Then the following inequality holds

(1 e){e,3)[" (12)

A(k) +1 - A(12— % g,

< min { =2~ |||
< min { =5 1]

BEZAEL e g 4 2020 51).

Proof. Consider the following,
[(Ee){e,3) = Ak) [{Le)(e,3)] + AL — k) [{L ¢) (e, 3)]

LN B i+ 1300

Ar) +1 A(l k)
=— ) sl + — L3l

Now using the fact that §(z) = z* is convex for k > 1, we get
A(k) + A1 — R)
et < S5 g+ 20 g

Obtaining the other inequality using the same technique, we obtain the desired
inequality. O
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Corollary 3.2. The following new inequality of (12) type can be easily obtained
by setting A(k) = 1 (3 + k)

ot <mind (345) W1+ (- 5) 0ok, 03

(5 5) 1+ (5 + 5 ) st}

Corollary 3.3. The following refinement of the CS inequality is evident from

(12):
il < 2 g 2 <. aa)

Proof. Since both inequalities hold from the proof of (12), we can without the
loss of generality consider that the one shown in the proof holds, then using the
CS inequality is obtained. O

The following inequalities are corollaries of (14).
Theorem 3.4. Let 9Q,B,C,D € B(H) and A such that (14) holds. Then for
x,y € H and k > 1 we have the inequality
A(k)+1
2

[(DeBAz, y)|" < V(B2 ) /(DI PDy,y)  (15)

+ 20 peman. )t < 4/[@TBRAr 2] YD,

Proof. Using (14) and setting [ = Bz, 3 = €*D*y, then simplifying

| B9 = (BOw, BAx) = (2B BAz,2) = (' B Qr, v

leD*yl* = (e D*y.)
we obtain the desired inequality. O

Corollary 3.5. Setting k = 2 we obtain the refinement of the inequality given
by Dragomir in his paper [10, eq. 9].

In particular, the obtained inequality refines various inequalities as particular
cases.

Remark 3.1. The Furuta inequality for 4,8 > 0 with A+ 8 > 1 is a particular

case of (15),
_ A(k) +1 . £
e gt < SO e b oyt ()

Al —k _
+ U8 it ) < (e

k
2

(TP, v) 5.
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The following result gives a sharper estimate to the one given by Dragomir in
[10]. For any operator ¥ € B(f)) and any A, 5 > 1 we have the inequality

_ _ A(k) +1 B s E
ey < SO et eyt )
Al — k& _ _ ko k

FAUZI) gt g < (32 (5, 0)

Setting i = f =1, k = 2 in (17) we obtain the following inequality, which is
sharper than the one given by Dragomir in his paper [10].

()P < 20 e ey, + 200

< (1%, 2)(|1T* Py, ).

(S, )P (18)

4. Numerical radius inequalities

We begin the section by stating the first result concerning the norm variant
of the CS inequality.

Theorem 4.1. The conditions are as those in (15),

A(

+1 . 5 *20y% || 3
IDeBa|* < % 191829 * |9l || (19)

JrA(12— K)

|oema|* < |9°|BPa? ol Por| .

Proof. The proof is omitted as it is similar to the one given in [30] by Stojiljkovié
and Dragomir. O

Corollary 4.2. Our inequality presents a refinement of the Dragomir’s result
established in [10, eq. (31)].

Theorem 4.3. The conditions are as the ones in (15) with an exception that
k > 2, then the following inequality holds

. A(k)+1 .
(o), & ) < 2L (g 46t ) (20)
A(k)+1 N r A(l—& .
$ 20 e o2 5+ B0 e e
In particular, we obtain
ka(‘Z)
A(k)+1 N AK)+1 &, __, A(l—-&
< 2O ety o 4 2O L o) 4 AU
A(k)+1 N A(l—=&
< ( i |||T|2k+|f |2k” + ( 5 )wk(z2)'
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Proof. Without the loss of generality, let us assume that one of the inequalities
hold in (12). Setting [ = Tx, 3 = &*x, ¢ = = in the Lemma 3.1, we obtain

A 1 Al —
(52, ) (o, &%) F < 2T ok gy ¢ AR

* k
: (T, 6 2)]

k
2

A 1 5
= % (Hfl% & || + (T, |6*|2x>lg>
Al —
+ %um, & z)|t
A 1 k k
< 22 (sl + e )
8
A(k)+1 " . A(l—k "
+ 20 e ey 5 4 20 g
A(k)+1 k * k
= 2OEL (gt 0y} 4 (161, )8
Ak + 1 % k A(l—=& *
+ 20 e e 5 4 AU 6 ¢
Ak)+1 . A(k)+1 . k
< 2EL e 4 et 2y, a) + 2O 3 6 2
Al —
+ %K@x, 6*x>|k.
Setting &* = T* and utilizing (5) and (9) while taking sup,_; we obtain
[lz|l=1
the second inequality. O

Theorem 4.4. The conditions are as the ones in (15) with an exception that
k > 1, then the following inequality holds

wt(es) < 20 gty ot (1)
+L12_ 5) 16P* + 5| w* (&) + A(;>w (187" 151*).

Proof. We begin with setting [ = Tz, 3 = Gz in (11)
(T, &) < A(r) [T |S2)* + A(L - #)|(T2, &2)|* |T2]* | Sa||*

< B 4 64y, 2| (T, )

20 (o oo 574 )

< B0 ot 4 j e, ) (T, )¢

+ 20 ey, a) + 2 (o, )
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Corollary 4.5. The conditions are the same as in (15) with an exception that
k > 1, then the following inequality holds

A
v < 2 g 4 ot (22)
A(l - A
+ ( 5 K‘) H|6|2k + |‘I|2kHwk(6*T) + é’i)w (|6|2k |T|2k)
Ak Al -k k k e
< 200 gz p o)+ 20 o 4 gt (t)
1 X
< 5 11 + |&]*].
Proof. Tt is enough to utilize (9) on the third term to obtain the result. O

Remark 4.1. Setting A(k) = K, k = 1_%\, A > 0in (21) we obtain the inequality
given by Nayak [26], namely we obtain Theorem 2.16. Specifying the following
parameters A(k) = Kk, kK = 1%\, A >0 in (22) we obtain the inequality given by
Nayak [26], namely we obtain Corollary 2.17. Choosing the following parameters
k=1, A(k) =k, k= H%’ A > 0 in (22) we obtain the refinement for the result
given by Al-Dolat et al. [3], namely Theorem 2.6. It is interesting to note
that our inequality generalizes the result given by Nayak in a way that the
function A permits various combinations and that it generalizes and sharpens
the inequality given by Al-Dolat et al. in both the inequality sense and in the

sense that function A permits various options for the function A.

Theorem 4.6. The conditions are as the ones in (15) with an exception that
k > 1, then the following inequality holds

A(k)+1 H
4

A

< % [0 + (23)

w*(B*Q)

Proof. Setting B=1,¢C =1, D* =B, y =z in (15), we obtain the following

A(k)+1 £, Al —k)

—~

3rar )t < 2 o )t st + 2D man o
Using AG inequality, we obtain
A 1 Al —
< 2L (a4 (8P 2) + 20 50 )
Now using (5), we obtain
A(k)+1 A(l—=k .
< % (1Q1* z, z) + (|B* z, 2)) + %K% Qz, z)|".

Taking sup, we obtain the first part.
To obtain the second part, notice the following

wk(B*Q)
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IN

A o] - Sy

< A(ffi‘F 1 H|D|2k n |%|2kH n A(14:— K) H|D|2k n |%‘2kH )
_ A(’@i‘*‘ 1 H|Q|2k n |%|2kH n A(14— K) H|Q|2k n |%‘2kH
b mt]

O

Corollary 4.7. Clearly, a refinement of the inequality (9) is given for arbitrary
function A that fulfills the conditions given in (12).

5. Conclusion

Refinement of the Buzano’s inequality has been given which as a consequence
allowed us to obtain various generalizations of both vector and numerical radius
type inequalities. Refinement and generalization of the results reported in the
literature is shown as to showcase the validity of the obtained results. Further
questions can be asked whether further refinements of the obtained inequalities
are possible. Application of the numerical radius can be seen in the estimation
of zeros of a polynomial as shown in the work of Bhunia et al. [6].
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