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AN APPLICATION OF MARKOV’S EXTENDED

INTERVAL ARITHMETIC TO INTERVAL-VALUED

SEQUENCE SPACES: A SPECIAL EXAMPLE

MEHMET ŞENGÖNÜL

Abstract. In the classical sense, it is known that it is impossible to con-

struct a vector space over the entire set of real numbers with the help of
simple interval arithmetic. In this article, it has shown that a vector space

can be constructed in the classical sense by helping Markov’s extended

interval arithmetic on the interval valued Cesaro sequence spaces of non-
absolute type. As a result of the positive answers, this idea was extended by

us with some theorems. Consequently, a new perspective was gained to the
construction of new types of sequence spaces by using different algebraic

operations on interval-valued sequence spaces.
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1. Introduction and Preliminaries

As it is known, interval numbers offer great advantages in managing uncer-
tainty and errors in scientific applications, providing ease of calculation and
enabling more reliable analysis. This allows the development of models that
better fit real-world problems and offer a wider range of applications. In re-
cent years, sequence spaces of interval numbers have also been constructed, and
many studies have been carried out. One of the main focuses of research on se-
quence spaces is to create new sequence spaces and investigate their topological
and algebraic properties. For this purpose, the domain of an infinite matrix is
generally taken into account, and new sequence spaces are created. There are
many articles about this in the relevant literature. Another way to create a new
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sequence space is to use sequences of intervals whose terms are interval num-
bers instead of sequences with real or complex terms for example you can see
[17]. The sequence spaces obtained this way are significantly broader than clas-
sical sequence spaces and exhibit distinctive topological and algebraic structures
compared to traditional ones. In this context, non-absolute type sequence spaces
represent a significant class that has garnered substantial attention in sequence
space theory. Convergent sequence spaces of non-absolute type; they were intro-
duced to study the convergence properties of sequences that are not absolutely
convergent. These spaces have been the subject of numerous research articles,
and many different aspects of their properties have been studied in detail.

One of these non-absolute type sequence spaces is denoted as

Xp = {(xk) :

(∑
k

|k−1
k∑
i=1

xi|p
) 1

p

<∞, 1 ≤ p <∞}, (1)

commonly referred to as the non-absolute type Ces‘aro sequence space, [16].
Overall, the study of Cesàro sequence spaces of non-absolute type is a fas-

cinating and important area of research in the theory of sequence spaces. The
properties of these spaces have important applications in many different areas of
mathematics, and their study has led to many interesting and important results.
By researching the relevant literature, one can gain a deep understanding of the
rich and complex structure of these important sequence spaces.

-The question of whether the explanations we provided above about Xp would
also apply to Xp(I), which is a natural extension of Xp, inspired us to prepare
this article, where

Xp(I) = {([x−k , x
+
k ]) :

(∑
k

max{|k−1
k∑
i=1

x−i |
p, |k−1

k∑
i=1

x+i |
p}

) 1
p

<∞, 1 ≤ p}.

It is not possible to construct a rich algebraic structure on a set of interval
numbers in the classical sense. However, when classical interval arithmetic is
used on the set of interval numbers, this is not as simple as it seems, and many
rich mathematical concepts are lost on the mathematical structures.

In this context, interval arithmetic was first suggested by P. S. Dwyer [6] in
1951. Development of interval arithmetic as a formal system and evidence of
its value as a computational device was provided by R. E. Moore [13], [15] in
1959 and 1962. Furthemore, Moore and others [7], [8], [6], [14] have developed
applications to differential equations.

After these developments, in [5] Chiao introduced sequence of interval num-
bers and after them the bounded and convergent sequences spaces of interval
numbers have defined by Şengönül and Eryılmaz in [17].

A set consisting of a closed interval of real numbers u such that u− ≤ x ≤ u+,
(u−, u+ ∈ R) is called an interval number. A real interval can also be considered
as a set. Let us denote the set of all interval numbers with notation R(I). That
is R(I) = {u : u is a interval number}.
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It is known that, one of the most problematic areas of the set of interval
numbers is related to their algebraic structure. While conventional operations
(using the endpoints of the interval) are often used in research, for to eliminate
the emerging problematic areas, here we will use new type algebraic operations
(extended interval arithmetics) of Markov. The new type algebraic operations
(extend interval arithmetics) belonging to Markov [12] can be extended to se-
quences of interval number as follows.

Let’s define transformation f from N to R(I) by k → f(k) = u, u = (uk).
Then, (uk) is called sequence of interval numbers. The uk is called nth term of
the interval sequence (uk).

Please let’s not lose sight of the fact that bolded notations correspond to
intervals.

For any uk = [u−k , u
+
k ], (k ∈ N) we define ω(uk) = u+k − u−k and χ(uk) =

{u−k /u
+
k if µ(uk) ≥ 0, u+k /u

−
k if µ(uk) < 0} where µ(uk) = (u−k + u+k )/2. In

addition to them, we define the functional φ,ψ : R(I)× R(I) → {+,−} defined
by

φ(uk,vk) =

{
+, ω(uk) ≥ ω(vk)
−, otherwise

, ψ(uk,vk) =

{
+, χ(uk) ≥ χ(vk)
−, otherwise

.

The notations Z, Z∗ and R(I) \ Z are defined by Z = {uk ∈ R(I) : 0 ∈ uk, k ∈
N}, Z∗ = {uk ∈ R(I) : u−k < 0 < u+k , k ∈ N} and R(I) \ Z = {uk ∈ R(I) : u−k >

0 or 0 > u+k , k ∈ N}, respectively.
Define a sing functional σ : R(I) \ Z∗ → {−,+} by means of

σ(uk) =

{
+, 0 ≤ u−k
−, u+k ≤ 0, uk ̸= [0, 0].

Then the addition and multiplication sequences of the interval numbers (uk)
and (vk) is defined by

uk + vk = [u−αk + vαk , u
α
k + v−αk ], α = φ(uk,vk) (2)

ukvk =



[u
σ(vk)ϵ

k v
−σ(uk)ϵ

k , u
−σ(vk)ϵ

k v
σ(uk)ϵ

k ], ϵ = ψ(uk,vk),uk,vk ∈ R(I) \ Z,

[u
−δ
k v

−δ
k , u

−δ
k v

δ
k], δ = σ(uk),uk ∈ R(I) \ Z,vk ∈ Z,

[u
−δ
k v

−δ
k , u

δ
kv

−δ
k ], δ = σ(vk),vk ∈ R(I) \ Z,uk ∈ Z,

[min{u−
k v

+
k , u

+
k v

−
k },max{u−

k v
−
k , u

+
k v

+
k }], uk,vk ∈ Z

(3)

Together with the operations in (2) and (3), defined as above, a extended
algebraic structure can be constructed on the set of sequences of intervals. This
algebraic construct can satisfy most of conditions vector space in classic manner.
Most importantly, it satisfies the property of u− u = θ, which is not present in
standard interval arithmetic. Further information about this algebraic structure
can be found in Markov’s article [12]. Therefore, we will leave it here without
providing more information.

The set of all interval numbers R(I) is a metric space [13] defined by

d(u,v) = max{|u− − v−|, |u+ − v+|}. (4)
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Moreover it is known that R(I) is a complete metric space.

Definition 1.1. [5] A sequence u = (uk) of interval numbers is said to be convergent
to the interval number u0 if for each ε > 0 there exists a positive integer n0 such that
d̃(uk,u0) < ε for all k ≥ n0, and we denote it by writing limk uk = u0.

The space of all null, c0(I), convergent, c(I), bounded, ℓ∞(I), sequences of interval
number are subsets of w(I) and for all (uk), (vk) ∈ c0(I) (or c(I), ℓ∞(I)) are complete

metric spaces defined by d̃(uk,vk) = supk{max(|u−
k − v−k |, |u+

k − v+k |)} [17].
Let A be an infinite matrix of real or complex numbers. We define cA = {u : Au ∈

c, with u−
k = u+

k } where c is convergent sequences space of real or complex numbers.
This type sequence space has been studies by many authors; see, for example, [1].

In general, let V be a given sequence space. We define U = {x : Ax ∈ V }. In follows,
we assume that the mapping of A from U to V is one-one and onto. In particular,
when A is a Cesaro matrix C of order one which is a lower triangular matrix defined
by

cnk =

{
1

n+1
, 0 ≤ k ≤ n,

0 , k > n,

for all n, k ∈ N and V = ℓp (where ℓp is classicial manner), for 1 ≤ p < ∞ then the set
U is called Cesàro sequence space of a non-absolute type [19] and denote it by Xp. In
other words, x ∈ Xp for 1 ≤ p < ∞ if and only if(∑

k

|k−1
k∑

i=1

xi|p
) 1

p

< ∞. (5)

Now we consider the absolute version. Let A be an infinite matrix and V a sequence
space in classical manner. We consider U = {x;A|x| ∈ V }. In particular,when A is a
Cesaro matrix C and V = ℓp for 1 < p < ∞ we call to U Cesaro sequences space of an
absolute type and denote it by cesp. In other words, x ∈ cesp for 1 < p < ∞ and only
if (∑

k

k−1
k∑

i=1

|xi|p
) 1

p

< ∞. (6)

The space cesp was first defined by Shiue [20], its α-dual given by Jagers [4] for 1 <
p < ∞, and by Ng and Lee [15] for p = ∞.

Let us define the sets cesp(I) and ℓp(I) of interval numbers as follows:

cesp(I)

= {(xk) = ([x−
k , x

+
k ]) :

(∑
k

max{k−1
k∑

i=1

|x−
i |

p, k−1
k∑

i=1

|x+
i |

p}

) 1
p

< ∞, p ≥ 1},

ℓp(I) = {(xk) = ([x−
k , x

+
k ]) :

(∑
k

max{|x−
k |

p, |x+
k |

p}

) 1
p

< ∞, p ≥ 1},

ℓ∞(I) = {(xk) = ([x−
k , x

+
k ]) : sup

k
{max{|x−

k |, |x
+
k |}} < ∞},

c(I) = {(xk) = ([x−
k , x

+
k ]) : lim

k
[x−

k , x
+
k ] = [x−

0 , x
+
0 ], [x

−
0 , x

+
0 ] ∈ I},

[17]. The set cesp(I) is called Cesaro sequence spaces of interval numbers and the set
ℓp(I) is called absolute convergent series space of pth order of interval numbers.
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2. Main Results: Construction Of The Space Xp(I).

Now we will construct Xp(I), which is the main subject of this study. First, let’s
provide the necessary preliminary information. In the classical manner non-absolute
type Cesàro sequence space, as mentioned above, has defined by Yee in [19] as :

Xp = {(xk) :

(∑
k

|k−1
k∑

i=1

xi|p
) 1

p

< ∞, 1 ≤ p < ∞} (7)

= {(xk) :

(
k−1

k∑
i=1

xk

)
∈ ℓp, 1 ≤ p < ∞}.

If we replace sequences of real numbers with sequences of interval numbers in (7),
we obtain Xp(I). In other words, non-absolute type Cesàro sequence space of intervals
is defined as follows:

Xp(I) = {([x−
k , x

+
k ]) :

(∑
k

max{|k−1
k∑

i=1

x−
i |

p, |k−1
k∑

i=1

x+
i |

p}

) 1
p

< ∞, 1 ≤ p}

= {(xk) = ([x−
k , x

+
k ]) :

(
k−1

k∑
i=1

xi

)
∈ ℓp(I), 1 ≤ p < ∞}. (8)

The set Xp(I) is not empty. The Xp(I) is not linear space in conventional manner. It
is clear that, if x−

k = x+
k for all k ∈ N then the space Xp(I) is equal to famous the space

Xp. The set Xp(I) has a algebraic structure with extended interval arithmetic which
these algebraic operations allow it to perform addition and subtraction operations just
like in real numbers on Xp(I).

The norm function on the classical sequence spaces can be extended to the sequence
spaces of the interval numbers. Let suppose that λ(I) is a subset of w(I) = {u :
u is sequence of interval numbers}.

Let λ(I) be the set of interval sequences u = ([u−
k , u

+
k ])k∈N. A functional ρ from λ(I)

into the non-negative extended real number system is called a semi-norm for intervals
if

(1) g(θ) = 0, where θ = [0, 0]
(2) g(αu) = |α|ρ(u)
(3) g(u+ v) ≤ g(u) + g(v), where u = [u−, u+] and v = [v−, v+].

If instead of 1. g satisfies the condition that g(u) = 0 if and only if u = θ, then g is
called a norm. Also, it know that the norm g(x) of x is the distance from x to 0 in the
sequences space real numbers (see, [10]). In many sources g(u) is written as ||u||λ(I).

If a normed space λ(I) contains a sequence (en) with the property that for every
u ∈ λ(I)there is a unique sequence of scalars (νn) such that ||u− (ν1u1 + ν2u2 + · · ·+
νnun)||λ(I) → θ, (n → ∞) then (νn) is called a Schauder basis (or basis) for λ(I).

When considering [12] (Markov’s ”extended interval arithmetic”) and convergence
on set ℓp(I), the following lemma can be easily proven.

Lemma 2.1. The sequence (En) = (δni) =

{
1, n = i
0, n ̸= i

is a Schauder basis for the

ℓp(I) in conventional manner.
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Proof. Let us suppose that u = (uk) = ([u−
k , u

+
k ]) ∈ ℓp(I) and define the sequence

(vn) = ([v−n , v+n ]) as follows:

vn = [v
−
n , v

+
n ] = [u

−
k , u

+
k ] −

n∑
i=1

[u
−
i , u

+
i ]Ei

= ([u
−
1 , u

+
1 ], [u

−
2 , u

+
2 ], · · · , [u−

n , u
+
n ], · · · ) − ([u

−
1 , u

+
1 ]E1 + [u

−
2 , u

+
2 ]E2 + · · · + [u

−
n , u

+
n ]En)

= ([u
−
1 , u

+
1 ] − [u

−
1 , u

+
1 ]E1, [u

−
2 , u

+
2 ] − [u

−
2 , u

+
2 ]E2, · · · , [u−

n , u
+
n ] − [u

−
n , u

+
n ]En, [u

−
n+1, u

+
n+1], · · · )

= ([u
−
1 , u

+
1 ] − [u

−
1 , u

+
1 ], [u

−
2 , u

+
2 ] − [u

−
2 , u

+
2 ], · · · , [u−

n , u
+
n ] − [u

−
n , u

+
n ], · · · , [u−

n+1, u
+
n+1], · · · )

(9)

If we consider extended interval arithmetics of Markov’s in the (9) then we have

([v−n , v+n ]) = (θ, θ, · · · , θ, [u−
n+1, u

+
n+1], · · · ).

Since vn → θ, (n → ∞) we can write

||vn||ℓp(I) =
∑

k≥n+1

(
max{|v−k |p, |v+k |p}

)
→ 0.

This shows that v =
∑

k ukEk. Now, let us suppose another representation as v =∑
k tkEk. Under condition ω(tk) ≤ ω(uk) (for all k ∈ N), we can write

||
n∑

k=1

([t−k , t
+
k ]− [u−

k , u
+
k ])Ek||ℓp(I) = ||

n∑
k=1

([t−k , t
+
k ] + [−u+

k ,−u−
k ])Ek||ℓp(I)

= ||
n∑

k=1

[t−k − u−
k , t

+
k − u+

k ]Ek||ℓp(I) → 0, (n → ∞).

This shows that for all k ∈ N, t−k = u−
k and t+k = u+

k , which implies u = t. This
completes the proof. □

Let

ρ(u,v) =

(∑
k

max{|k−1
k∑

i=1

u−
i − v−i |p, |k−1

k∑
i=1

u+
i − v+i |p}

) 1
p

.

The function ρ is metric function on Xp(I) and we can easily prove that the couple
(Xp(I), ρ) is a complete metric space. Let

ρ(u, θ) =

(∑
k

max{|k−1
k∑

i=1

u−
i − 0|p, |k−1

k∑
i=1

u+
i − 0|p}

) 1
p

=

(∑
k

max{|k−1
k∑

i=1

u−
i |

p, |k−1
k∑

i=1

u+
i |

p}

) 1
p

where θ = [0, 0]. Then ρ(u, θ) is a norm on the Xp(I) and denoted by ||u||Xp(I).
Therefore, we can give following proposition.

Proposition 2.2. The Xp(I) is complete normed non-absolute type Cesàro space of
interval numbers with the norm

||u||pXp(I)
=
∑
k

max{|k−1
k∑

i=1

u−
i |

p, |k−1
k∑

i=1

u+
i |

p} (10)

and extended interval arithmetics of Markov’s.
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Proof. It is easy to prove that the norm conditions are satisfied. Let’s prove that Xp(I)

is complete according to the relevant norm. Let (u(n))n∈N be any Cauchy sequence in

the space Xp(I) . We write u(m) = (u
(m)
i )i∈N = (u

(m)
1 , u

(m)
2 , u

(m)
3 , ...). From definition

of Cauchy sequence we have

||u(m) − u(n)||Xp(I)

=

(∑
k

max{|k−1
k∑

i=1

u
(m)−
i − u

(n)−
i |p, |k−1

k∑
i=1

u
(m)+
i − u

(n)+
i |p}

) 1
p

< ϵ

for all n,m ≥ N(ϵ) and given ϵ > 0. Then for every fixed i, the sequence (u
(m)
i )m∈N

converges. In this case, let suppose that limm(u
(m)
i ) = ui. Then for all m > N(ϵ) and

for all j we can write

j∑
k=1

max{|k−1
k∑

i=1

u
(m)−
i − u−

i |
p, |k−1

k∑
i=1

u
(m)+
i − u+

i |
p} ≤ ϵp.

Thus letting j → ∞ then we have ||u(m) − u||Xp(I) < ϵ for all m. Therefore, for
1 ≤ p < ∞ the Xp(I) is complete. □

Theorem 2.3. Let 1 ≤ p < ∞ and λ be defined on Xp(I) by ξ(u) = (ξn(u)), ξn(u) =
n−1∑n

i=1 ui

Then ξ is an one-to-one bounded linear transformation from Xp(I) onto the sequence
space ℓp(I) with operator norm 1 and extended interval arithmetics of Markov’s.

Proof. The proof is easy so we omit it. □

Theorem 2.4. cesp(I) ⊂ Xp(I) for 1 ≤ p < ∞ and cesp(I) ̸= Xp(I).

Proof. The inclusion cesp(I) ⊂ Xp(I) for 1 ≤ p < ∞ is clear from definition of cesp(I)
and Xp(I) for 1 ≤ p < ∞. Now let us consider second part of theorem. Now let us
consider the sequence of intervals as follows:

(uk) = ([u−
k , u

+
k ]) = ([−1, 0]︸ ︷︷ ︸

1. place

, [0, 2], [−2, 0], ...,

k is even︷︸︸︷
[0, 2] , [−2, 0]︸ ︷︷ ︸

k is odd

, ...).

Then(∑
k

|k−1
k∑

i=1

[u−
i , u

+
i ]|

p

) 1
p

=

(
|[−1, 0]|p + |1

2
([−1, 0] + [0, 2])|p

+|1
3
([−1, 0] + [0, 2] + [−2, 0])|p + ...

) 1
p

=

(
max{| − 1|, |0|})p + (

1

2
max{|0|, |1|})p

+(
1

3
max{| − 1|, |0|})p + · · ·

) 1
p

=

(∑
k

(
1

k
)p
) 1

p

.
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Since the last series convergent for p > 1, we see that the sequence (uk) = ([u−
k , u

+
k ]) in

Xp(I) but not in the space cesp(I) by using similar way. That is cesp(I) ̸= Xp(I). □

Theorem 2.5. The sequence space Xp(I) is linearly isomorphic to the space ℓp(I),
that is Xp(I) ∼= ℓp(I).

Proof. We should show the existence of a linear bijection between the spaces Xp(I)
and ℓp(I) Consider the transformation C define, defined as follows:

C : Xp(I) 7−→ ℓp(I), u 7−→ Cu = v, v = (vi), vi =
1

i

i∑
j=1

uj = [
1

i

i∑
j=1

u−
j ,

1

i

i∑
j=1

u+
j ],

(i ∈ N). Under operations which are given in (2) and (3) the linearity of C is clear.
Further, it is trivial that u = θ = [0, 0] whenever Cu = θ and hence C is injective.
Let v ∈ ℓp(I) and define the sequence u = (uk) by uk = kvk − (k − 1)vk−1 =

[
∑k

j=k−1 j(−1)k−jv−j ,
∑k

j=k−1 j(−1)k−jv+j ], (k ∈ N). Then

∥u∥pXp(I)
=
∑
k

max{|k−1
k∑

j=1

u−
j |

p, |k−1
k∑

j=1

u+
j |

p}

=
∑
k

max{|k−1
k∑

i=1

(

k∑
j=k−1

j(−1)k−jv−j )|p, |k−1
k∑

i=1

(

k∑
j=k−1

j(−1)k−jv+j )|p}

=
∑
k

max{|v−j |p, |v+j |p} = ∥v∥pℓp(I)

which says us that u ∈ Xp(I), consequently C is surjective. Hence, C is linear bijection
map between the spaces Xp(I) and ℓp(I). This completes proof. □

Now let (uk) and uk = [−1, 0] if k is odd; uk = [0, 1] if k is even. Then (uk) is in
Xp(I) but |uk| = max{|u−

k |, |u
+
k |} = 1 = [1, 1] is not in Xp(I) for 1 < p < ∞. That

is Xp(I) is non-absolute type. Since any space X solid then X is also absolute type.
Thus, since Xp(I) is non-absolute type it cannot be solid. This thought suggests that
the α-, β-, and γ-duals of Xp(I) may differ, which may be addressed in subsequent
sections.

Because of the isomorphism C , defined in Theorem 2.5, is onto the inverse image of
the basis of those space ℓp(I) the basis of the new space Xp(I) repsectively. Therefore,
we have the following:

Proposition 2.6. Define the sequence b(k) = {b(k)n }n∈N of the elements of the space
Xp(I) by

(b(k)n ) =

{
k(−1)k−n, (k − 1 ≤ n ≤ k)

θ, others

for every fixed k ∈ N. Then the sequence (b
(k)
n ) is a basis for Xp(I) in classical manner

and any u ∈ Xp(I) has a unique representation of the form: u =
∑

k vkb
(k) where

vk = (Cu)k for all k ∈ N.

In fact, it is interesting that a sequence of real numbers can serve as a basis for the
sequence spaces of interval numbers. I don’t currently know if there exists a basis for
the sequence spaces of interval numbers that consists of a sequence of interval numbers.
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3. Some Matrix Transformations on ℓ∞(I), ℓp(I) and Xp(I)

In this section, we will represent an infinite matrix with each term being a real
number using matrix A, and an infinite matrix with each term being an interval number
using matrix A = ([a−

nk, a
+
nk]).

Let A = (ank) be an infinite matrix of the interval numbers and λ(I), µ(I) ⊂ w(I).
For u = (uk) ∈ λ(I)) if Au = v ∈ µ(I) then the matrix A is called matrix transform
from λ(I) to µ(I). The meaning of this is that the matrix A transforms every element
λ(I) in the form of (uk) to µ(I). The product of the A and u gives to us[∑

k

[a−
1k, a

+
1k][u

−
k , u

+
k ]
∑
k

[a−
2k, a

+
2k][u

−
k , u

+
k ] · · ·

∑
k

[a−
nk, a

+
nk][u

−
k , u

+
k ] · · ·

]T
1×∞

as a column matrix. Clearly, every n ∈ N the series
∑

k[a
−
nk, a

+
nk][u

−
k , u

+
k ] must be

convergent.
Let u ∈ λ(I)) and ω(uk) ≥ ω(uk+1). Given A = (ank) = a−

nk = a+
nk > 0 of real

numbers and (ank) be a decreasing sequence of real numbers, that is for all k, n ∈ N,
ank ≥ an+1,k+1. Under extend interval arithmetics operations of Markov’s and due to
the hypothesis above, the following equation is valid.∑

k

ank[u
−
k , u

+
k ] = [an1u

−
1 +

∑
k≥2

anku
+
k , an1u

+
1 +

∑
k≥2

anku
−
k ] (11)

Some authors, such as Başar [3], Başar and Çolak [4], Kuttner [9], Lorentz and
Zeller [11] worked on the dual summability methods. Now, we give a extension of dual
summability methods for interval type sequence spaces:

Let us suppose that the infinite matrices A = (ank) and B = (bnk) map the se-
quences of intervals u = (uk) and v = (vk) which are connected by the relation
vn = [v−n , v+n ] = 1

n

∑n
k=1 uk = 1

n

∑n
k=1[u

−
k , u

+
k ] = [ 1

n

∑n
k=1]u

−
k ,

1
n

∑n
k=1 u

+
k ] to the

sequences of interval numbers z = (zn) and t = (tn), respectively, i.e.,

zn = (Ax)n =
∑
k

ankxk, (n ∈ N) (12)

and

tn = (By)n =
∑
k

bnkyk, (n ∈ N). (13)

It is clear here that the method B is applied to the C-transform of the sequence of
intervals x = (xk) while the method A is directly applied to the entries of the sequence
of intervals x = (xk). So, the methods A and B are essentially different.

Let us assume that the matrix productBC exists which is a much weaker assumption
than the conditions on the matrix B belonging to any matrix class, in general. The
methods A and B in (12), (13) are called dual summability methods if zn reduces to tn
(or tn reduces to zn) under the application of formal summation by parts. This leads
us to the fact that BC exists and is equal to A and (BC)x = B(Cx) formally holds,
if one side exists. This statement is equivalent to the following relation between the
entries of the matrices A = (ank) and B = (bnk):

ank :=

∞∑
j=k

1

j + 1
bnj or bnk := (k + 1)(ank − an,k+1) = (k + 1)∆ank (14)

for all n, k ∈ N.
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Let’s assume that the following are given

sup
n

∑
k≥2

|ank| < ∞ (15)

sup
n

|an1| < ∞ (16)

sup
K

∑
n

|
∑

k∈K,k≥2

ank|p < ∞

(17)∑
n

|an1|p < ∞ (18)

∑
n

|n−1
n∑

i=1

ai1|p < ∞

(19)

sup
n

∑
k

|ank|q < ∞, q = p(p− 1)−1 (20)

sup
n

|an1|q < ∞ (21)

sup
K

∑
n

|
∑

k∈K,k≥2

(k + 1)(ank − ank+1)|p < ∞

(22)∑
n

|2(an1 − an2)|p < ∞ (23)

sup
K

∑
n

|
∑

k∈K,k≥2

n−1
n∑

i=1

aik|p < ∞ (24)

3.1. Matrix Transformations on ℓ∞(I).

Theorem 3.1. A ∈ (ℓ∞(I) : ℓ∞(I)) if and only if (15) and (16) holds.

Proof. Let us suppose that u = ([u−
k , u

+
k ]) ∈ ℓ∞(I) with ω(uk) ≥ ω(uk+1) and given

A in the form (ank) = a−
nk = a+

nk > 0 and ank ≥ ank+1. Then

||Au||ℓ∞(I) = ||
∑
k

ank[u
−
k , u

+
k ]||ℓ∞(I)

= sup
n

(max{|an1u
−
1 +

∑
k≥2

anku
+
k |, |an1u

+
1 +

∑
k≥2

anku
−
k |}) (25)

Since ([u−
k , u

+
k ]) ∈ ℓ∞(I), we have supk{|u

−
k |, |u

+
k |} < ∞. Thus equality (25) can

rearrangement as follows:

||Au||ℓ∞(I) ≤ sup
n

|an1|(max{|u−
1 |, |u

+
1 |}) + (sup

n

∑
k≥2

|ank|)(max
k≥2

{|u−
k |, |u

+
k |}) (26)

Let we write M1 = max{|u−
1 |, |u

+
1 |}, M2 = max{|u−

k |, |u
+
k |} and M = max{M1,M2}.

Then the last side of the equality (30) is ||Au||ℓ∞(I) ≤ M
(
supn |an1|+ supn

∑
k≥2 |ank|

)
which it yields that supn |an1| < ∞ and supn

∑
k≥2 |ank| < ∞ for all k ∈ N.

Conversely, let suppose that u = ([u−
k , u

+
k ]) ∈ ℓ∞(I) and the conditions supn |an1| <

∞ and supn

∑
k≥2 |ank| (for all k ∈ N) are holds. Then it is easily see that Au ∈ ℓ∞(I).

This completes proof. □

Theorem 3.2. A ∈ (ℓ∞(I) : ℓp(I)) if and only if (17) and (18) holds.

Proof. Let us suppose that A ∈ (ℓ∞(I), ℓp(I)). Then for all u ∈ ℓ∞(I) the sequence
(A(u)n) exists and in ℓp(I). If we consider (11) we have

||Au||ℓp(I) =

(∑
n

|(Au)|p
) 1

p

=

∑
n

(max{|an1u
−
1 +

∑
k≥2

anku
+
k |, |an1u

+
1 +

∑
k≥2

anku
−
k |})

p

 1
p
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≤

∑
n

(max{|an1u
−
1 |+ |

∑
k≥2

anku
+
k |, |an1u

+
1 |+ |

∑
k≥2

anku
−
k |})

p

 1
p

=

∑
n

(max{|an1u
−
1 |, |an1u

+
1 |}+max{|

∑
k≥2

anku
+
k |, |

∑
k≥2

anku
−
k |})

p

 1
p

.

(27)

The last expression is holds, for all u ∈ ℓ∞(I). Let K be finite subset of N. For n ∈ K
we may chose a sequence u as follows:

u = un
k =

{
[0, 1], n = k

θ = [0, 0], others

then the expression (27) is equal to∑
n

(max{0, |an1|}+max{|
∑
k≥2

anku
+
k |, 0})

p

 1
p

=

∑
n

(|an1|+ |
∑
k≥2

anku
+
k |)

p

 1
p

≤

(∑
n

|an1|p
) 1

p

+

∑
n

|
∑
k≥2

anku
+
k |

p

 1
p

.

And from here we see that the conditions (17) and (18) are necessary. Conversely, if
the conditions (17) and (18) are holds then easily we see that A ∈ (ℓ∞(I), ℓp(I)) for
all u ∈ ℓ∞(I). □

Let’s assume that there exists a relation

enk = n−1
n∑

i=1

dik (28)

between matrices D and E. And λ(I) given a sequence space of intervals. Then

Theorem 3.3. D ∈ (λ(I) : Xp(I)) if and only if E ∈ (λ(I) : ℓp(I)) holds.

Proof. The proof of this theorem can be easily demonstrated using a similar approach
as utilized by Şengönül [18]. Therefore, we did not provide the proof. □

Proposition 3.4. Let the equality (28) holds. Then the result of the Theorem 3.3 we
have A ∈ (ℓ∞(I) : Xp(I)) if and only if (24) and (19) holds.

3.2. Matrix Transformations on ℓp(I).

Theorem 3.5. A ∈ (ℓp(I) : ℓ∞(I)) if and only if (20) and (21) holds.
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Proof. Let us suppose that A ∈ (ℓp(I) : ℓ∞(I)) hold. Then for all u = ([u−
k , u

+
k ]) ∈

ℓp(I) with ω(uk) ≥ ω(uk+1) and given A in the form (ank) = a−
nk = a+

nk > 0 and
ank ≥ ank+1 we have

||Au||ℓ∞(I) = ||
∑
k

ank[u
−
k , u

+
k ]||ℓ∞(I)

= sup
n

(max{|an1u
−
1 +

∑
k≥2

anku
+
k |, |an1u

+
1 +

∑
k≥2

anku
−
k |}) (29)

Since ([u−
k , u

+
k ]) ∈ ℓp(I), we have supk{|u

−
k |, |u

+
k |} < ∞. Thus equality (29) can

rearrangement as follows:

||Au||ℓ∞(I) ≤ sup
n

|an1|(max{|u−
1 |, |u

+
1 |}) + (sup

n

∑
k≥2

|ank|)(max
k≥2

{|u−
k |, |u

+
k |}) (30)

Under assumptions M1 = max{|u−
1 |, |u

+
1 |}, M2 = max{|u−

k |, |u
+
k |} and M = max{M1,

M2}; we see that last side of the equality (30) is ||Au||ℓ∞(I) ≤ M
(
supn |an1| +

supn

∑
k≥2 |ank|

)
which it yields that supn |an1|q < ∞ and supn

∑
k≥2 |ank|q < ∞.

Now let suppose that u = ([u−
k , u

+
k ]) ∈ ℓp(I) and the conditions supn |an1|q < ∞

and supn

∑
k≥2 |ank|q are holds. Then it is easily see that Au ∈ ℓ∞(I). This completes

proof. □

4. Results and Discussion

Sequences of interval numbers, each component of which is an interval, are not
a vector space according to classical interval arithmetic. Due to this deficiency, the
possibility of obtaining rich algebraic structures on interval number sequences is lost.
In other words, it is not possible to elevate the spaces of interval number sequences
to richer mathematical structures according to these algebraic operations. In this
study, an attempt was made to obtain the linear space structure of interval number
sequence spaces by using the algebraic operations suggested by Markov for intervals.
Significant results were obtained. By using these operations, the door has been opened
to investigate the properties of interspaced number sequence spaces such as symmetry,
monotonicity, normality or rotundness. For example, it has been shown that a sequence
of real numbers can form the basis for Xp(I). Additionally, in this study, the infinite
matrix A is considered as an infinite matrix of real numbers. If the elements of the
matrix A are also intervals, it remains an open problem whether matrix transformations
can be performed. But my expectation is that there may be nothing more than a few
additional conditions.
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