DOI QR코드

DOI QR Code

가변 입력 전압 조건하에서 태양광 시스템 적용을 위한 승압형 DC-DC 컨버터 연구

A Study on the Step-up DC-DC Converter for PV System Application Under Variable Input Voltage Condition

  • 이주엽 (남서울대학교 전자공학과) ;
  • 오세천 (남서울대학교 전자공학과) ;
  • 조일형 (남서울대학교 전자공학과) ;
  • 김예진 (남서울대학교 전자공학과) ;
  • 고윤석 (남서울대학교 전자공학과)
  • Ju-Yeop Lee ;
  • Se-Cheon Oh ;
  • Il-Hyeong Jo ;
  • Ye-Jin Kim ;
  • Yun-Seok Ko (Dept. of Electronic Engineering, Namseoul University)
  • 투고 : 2024.06.18
  • 심사 : 2024.08.12
  • 발행 : 2024.08.31

초록

본 논문에서는 태양광 시스템 적용을 위한 PWM 제어 기반의 승압형 DC-DC 컨버터 설계 방법을 연구하였다. 스위칭 모드 방식의 승압형 DC-DC 컨버터의 동작원리를 분석하였으며 기본적인 설계 방법을 연구하였다. 태양광 시스템 적용을 위해 가변 입력 조건 하에서 컨버터의 출력 전압이 목표 전압을 추종할 수 있도록 PWM 제어를 기반으로 하는 출력 전압 궤환 제어 알고리즘을 개발하였다. 제안된 알고리즘의 유효성을 검증하기 위한 절차로서 입력 전압 DC 10V를 DC 30V로 승압하여 출력하는 하나의 궤환 출력 전압을 가지는 승압형 DC-DC 컨버터의 시작품을 설계, 제작하였다. 성능 평가 시험에서 오실로스코프와 LCD의 출력전압이 기준 전압에 대한 1[%] 이내의 오차율을 보임으로써 목표 출력전압을 정확하게 추종함을 확인하였다.

In this paper, the design method of a step-up DC-DC converter based on PWM control was studied for solar power system application. The operating principle of the switching mode step-up type DC-DC converter was analyzed and the basic design method was studied. For photovoltaic system application, an output voltage feedback control algorithm based on PWM control was developed to enable the converter's output voltage to follow the target voltage under variable input conditions. As a procedure to verify the effectiveness of the proposed algorithm, a prototype of a step-up DC-DC converter with a single feedback output voltage was designed and made by boosting the input voltage DC 10V to DC 30V. In experiments with prototypes, it was confirmed that the output voltage of the oscilloscope and LCD accurately followed the target output voltage. In the performance evaluation test, it was confirmed that the output voltage of the oscilloscope and LCD accurately followed the target output voltage by showing an error rate within 1 [%] of the reference voltage.

키워드

참고문헌

  1. B. M. Hasaneen and A. A. Elbaset Mohammed, "Design and Simulation of DC/DC Boost Converter," 2008 12th International Middle-East Power System Conference, Aswan, Egypt, 2008, pp. 335-340. doi: 10.1109/MEPCON.2008.4562340.
  2. P. Kumar, V. Singh, H. S. Singh, and V. Kumar, "DC TO DC Boost Converter, "International Journal of Scientific Research and Management Studies (IJSRMS), vol. 3, no. 1, 2015, pp. 88-95.
  3. J. Ra, "Design and Analysis of DC-DC Boost Converter," International Journal of Advance Research and Innovation, vol. 4, no. 3, Sept. 2016, pp. 499-502.
  4. M. Forouzesh, Y. P. Siwakoti, "Step-Up DC-DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications," IEEE Trans. On Power Electronics, vol. 32, no. 12, Dec. 2017, pp. 9143-9178. doi: 10.1109/TPEL.2017.2652318
  5. Y. Chai, "Design of Modular DC / DC Converter Design with Programmable Output Voltage," J. of the Korea Institute of Electronic Communication Science, vol. 14, no. 2, Apr. 2019, pp. 345-350. https://doi.org/10.13067/JKIECS.2019.14.2.345.
  6. B Choi, S. Kim, D. Woo, M. Lee, and Y. Ko, "Design and Making of PWM Control-based AC-DC Converter with Full-Bridge Rectifier," J. of the Korea Institute of Electronic Communication Science, vol. 18, no. 4, Aug. 2023, pp. 617-624. https://doi.org/10.13067/JKIECS.2023.18.4.617.
  7. E. Yoo and Y. Park, "Experimental Validation of DC/DC Converter for Ripple Reduction," Proceedings of the Korean Society of Precision Engineering Conference. Korean Society for Precision Engineering, Changwon, Korea, 2010.
  8. K. I. Hwu, C. F. Chuang, and W. C. Tu, "High Voltage-Boosting Converters Based on Bootstrap Capacitors and Boost Inductors," IEEE Trans. On Industrial Elec., vol. 60, no. 6, June 2013, pp. 2178-2193. doi: 10.1109/TIE. 2012.2194972.
  9. N. Hashim, Z. Salam, D. Johari, and N. F. Ismail, "DC-DC Boost Converter Design for Fast and Accurate MPPT Algorithms in Stand-Alone Photovoltaic System," International Journal of Power Electronics and Drive System (IJPEDS), vol. 9, no. 3, Sept. 2018, pp. 1038-1050. http://doi.org/10.11591/ijpeds.v9.i3.pp1038-1050.
  10. N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, "Optimization of Perturb and Observe Maximum Power Point Tracking Method," IEEE Trans. on Power Electronics, vol. 20, no. 4, pp. 963-973, 2005. doi: 10.1109/TPEL.2005. 850975.
  11. D. Verma, S. Nema, R. Agrawal, Y. Sawle, and A. Kumar, "A Different Approach for Maximum Power Point Tracking (MPPT) Using Impedance Matching through Non-Isolated DC-DC Converters in Solar Photovoltaic Systems," Electronics, vol. 11, no. 7, article no. 1053, Mar. 2022. https://doi.org/10.3390/electronics11071053.
  12. A. Hayat, D. Sibtain, A. F. Murtaza,, S. Shahzad, M. S. Jajja and H. Kilic, "Design and Analysis of Input Capacitor in DC-DC Boost Converter for Photovoltaic-Based Systems," Sustainability, vol. 15, no. 17, article no. 6321, Apr. 2023. https://doi.org/ 10.3390/su15076321.
  13. D. M. Bellur and M. K. Kazimierczuk, "DC-DC Converters for Electric Vehicle Applications," 2007 Electrical Insulation Conference and Electrical Manufacturing Expo, Nashville, TN, USA, 2007, pp. 286-293. doi: 10.1109/EEIC.2007.4562633.
  14. A. Sharma and V. Agarwal, "A Review of Various DC-DC Convertor Topologies for Electrical Vehicle," Test Engineering and Management, vol. 83, May - June 2020, pp. 26324-26344.
  15. Y. Kim, Y. Chang, and C. Moon, "Design of AC/DC Combined V2X System for Small Electric Vehicle, "J. of the Korea Institute of Electronic Communication Science, vol. 17, no. 4, Aug. 2022, pp. 617-624. https://doi.org/10.13067/JKIECS.2022.17.4.617.
  16. A. M. Trzynadlowski, Introduction to Modern Power Electronics : 3rd Edition. New Jersey: John Wiley and Sons Inc., Jan. 2016.