
J. Appl. Math. & Informatics Vol. 42(2024), No. 4, pp. 997 - 1006

https://doi.org/10.14317/jami.2024.997

A FAMILY OF HOLOMORPHIC FUNCTIONS

ASSOCIATED WITH MUTUALLY ADJOINT FUNCTIONS†
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Abstract. In this paper, making use of symmetric differential operator,

we introduce a new class of ℓ-symmetric - mutually adjoint functions. To

make this study more comprehensive and versatile, we have used a dif-
ferential operator involving three-parameter extension of the well-known

Mittag-Leffler functions. Mainly we investigated the inclusion relation and
subordination conditions which are the main results of the paper. To es-

tablish connections or relations with earlier studies, we have presented

applications of main results as corollaries.
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1. Introduction

Let H be the class of holomorphic (analytic) functions in the open unit disc
U = {z : | z |< 1}. Let

H(a, n) = {f ∈ H, f(z) = a+ anz
n + an+1z

n+1 + . . .}
be the subclass of H. Also, let

A = {f ∈ H, f(z) = z + a2z
2 + a3z

3 + . . .} (1)

and two functions f, g ∈ A are called mutually adjoint if for all z ∈ U

Re
zf ′(z)

f(z) + g(z)
> 0 and Re

zg′(z)

f(z) + g(z)
> 0,
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which is denoted by MS∗. Lewandowski and Stankiewicz in [7] established that

if f(z) and g(z) are mutually adjoint, then the function ψ(z) = f(z)+g(z)
2 is

starlike and both f(z) and g(z) are close-to-convex. We let S denote the class of
functions f ∈ A which are univalent in U . S∗ and CC will denote the respective
class of starlike and close-to-convex in U .

Example 1.1. Let f(z) = 1+z
1−z and g(z) = z−1, |z| < 1 and let T (z) = zf ′(z)

f(z)+g(z)

and R(z) = zg′(z)
f(z)+g(z) . Then we can see that

Re [T (z)] = Re

(
2

(1− z)(3− z)

)
> 0 (z ∈ U)

and

Re [R(z)] = Re

(
1− z

(3− z)

)
> 0 (z ∈ U).

It is well known that if f(z) given by (1) is in S, then the ℓ-symmetrical

function
[
f(zℓ)

]1/ℓ
, (ℓ is a positive integer) is also in S (see [5, pg. 18]). Let ℓ

be a positive integer and ε = exp(2πi/ℓ). For f ∈ A, let

fℓ(z) =
1

ℓ

ℓ−1∑
ν=0

f(ενz)

εν
. (2)

The class of starlike functions with respect to ℓ-symmetric points, denoted by
Ssℓ , which was defined by Sakaguchi [10] as below:

The function f is said to be starlike with respect to ℓ-symmetric points if it
satisfies the condition

Ssℓ = {f ∈ A : Re
zf ′(z)

fℓ(z)
> 0, fℓ(z) as in(2)}

and shown that f ∈ Ssℓ are univalent. Note that Ss1 = S∗.
With primary aim of unifying the class of mutually adjoint close-to-convex

functions and the class of functions starlike with respect to ℓ-symmetric points,
Aouf et al. [2] defined the class of functions Ω(ℓ, U, V ) satisfying the subordina-
tion condition

z g′i(z)
1
ℓ

∑ℓ
ν=1 gν(z)

≺ 1 + Uz

1 + V z
(z ∈ U ; i = 1, 2, . . . , ℓ; −1 ≤ V < U ≤ 1),

where g1, . . . , gℓ ∈ A. Note that Aouf et al. [2] defined the class Ω(ℓ, U, V )
involving multiplier transformation. Notice that ℓ = 2, U = 1 and V = −1, the
class Ω(ℓ, U, V ) reduces to the class MS∗. Also, letting gi(z) = f(z), gν(z) =
ω−νf(ωνz) (f ∈ A; ν = 1, . . . , ℓ; ω = e2πi/n), U = 1 and V = −1 in Ω(ℓ, U, V ),
then the class Ω(ℓ, U, V ) reduces to the class Ssℓ .

Recently, Breaz et al. [3] defined the function

Γ(U, V ; p; σ; Ψ) =
[(1 + U)p+ σ(V − U)] Ψ(z) + [(1− U)p− σ(V − U)]

[(V + 1)Ψ(z) + (1− V )]
, (3)
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where Ψ(z) ∈ P, a well-known class of functions with positive real part and is
of the form

Ψ(z) = 1 +R1z +R2z
2 + · · · . (4)

Lemma 1.2. [4] If p ∈ P, and Ψ(z) is given by (4), then

|Rn| ≤ 2 for n ≥ 1, (5)

where P is the family of all functions Ψ analytic in U for which

Re (Ψ(z)) > 0 (z ∈ ∆).

Using Hadamard product, we let following operator Ξ(θ, ϑ, ρ)f : U −→ U by

Ξ(θ, ϑ, ρ)f(z) =
[
f(z) ∗ Rρ

θ, ϑ(z)
]
= z +

∞∑
n=2

Γ(ϑ)(ρ)n−1

Γ (ϑ+ θ(n− 1)) (n− 1)!
anz

n,

(6)

where Rρ
θ, ϑ(z) = z +

∑∞
n=2

Γ(ϑ)(ρ)n−1

Γ(ϑ+θ(n−1))(n−1)!z
n (z, θ, ϑ, ρ ∈ C, Re(θ) > 0). The

function Rρ
θ, ϑ(z) is the normalized form of the Mittag-Leffler three parameter

function (popularly known as Prabhakar function [9]).
Throughout this paper, we assume that −1 ≤ V < U ≤ 1, ℓ ∈ N, ε =

exp(2πi/ℓ) and

Ξ(θ, ϑ, ρ)fj, ℓ(z) =
1

ℓ

ℓ−1∑
ν=0

ε−νj [Ξ(θ, ϑ, ρ)f(ενz)] = z + · · · (7)

(f ∈ A; ℓ = 1, 2, 3, . . .).

And let Ξ(θ, ϑ, ρ)f1, ℓ(z) = Ξ(θ, ϑ, ρ)fℓ(z)

Motivated by Aouf et al. [2], we now define the following.

Definition 1.3. For Γ(U, V ; p; σ; Ψ) defined as in (3), a function f ∈ A is said
to be in Am

k, σ(θ, ϑ, ρ; U, V ; Ψ) if and only if

z [Ξ(θ, ϑ, ρ)f ′i(z)]
1
ℓ

∑ℓ
ν=1 Ξ(θ, ϑ, ρ)fν(z)

≺ Γ(U, V ; 1; σ; Ψ), (z ∈ U ; i = 1, 2, . . . , ℓ), (8)

where 1
ℓ

∑ℓ
j=1 Ξ(θ, ϑ, ρ)fν(z) ̸= 0.

Remark 1.1. For appropriate choice of the parameters, we can see that MS∗

and Ω(ℓ, U, V ) can be obtained as a special case of Aσ(θ, ϑ, ρ; U, V ; Ψ). Now
we list a few special cases to illustrate that Aσ(θ, ϑ, ρ; U, V ; Ψ) is a complete
generalization of various subclasses of starlike functions.

(1) If we let θ = σ = 0, ρ = 1, fi(z) = f(z), fν(z) = ω−νjf(ωνz) (f ∈
A; ν = 1, . . . , ℓ; ω = e2πi/n), U = 1 and V = −1, then the class
Aσ(θ, ϑ, ρ; U, V ; Ψ) reduces to the class

Ssj, ℓ =
{
f ∈ A :

zf ′(z)

fj, ℓ(z)
≺ Ψ(z)

}
.
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The class Ssj, ℓ(Ψ) was introduced and studied by Karthikeyan in [6].

(2) If we let θ = σ = 0, ρ = 1, fi(z) = f(z), fν(z) = ω−νjf(ωνz) +

ωνjf(ωνz) (f ∈ A; ν = 1, . . . , ℓ; ω = e2πi/n), U = 1 and V = −1, then
the class Aσ(θ, ϑ, ρ; U, V ; Ψ) reduces to the class

Sc2j, ℓ =
{
f ∈ A :

zf ′(z)

f2j, ℓ(z)
≺ Ψ(z)

}
.

The class Sc2j, ℓ(Ψ) was introduced and studied by Selvaraj et al. in [12]

(also see [14]).

Further, for convenience we now define the following.

Definition 1.4. For Γ(U, V ; p; σ; Ψ) defined as in (3), a function f ∈ A is said
to be in Mσ(θ, ϑ, ρ; U, V,X, Y ) if and only if

zΞ(θ, ϑ, ρ)f ′(z)

Ξ(θ, ϑ, ρ)fℓ(z) + Ξ(θ, ϑ, ρ)gℓ(z)
≺ Γ(U, V ; 1; σ; Φ), (9)

and
z Ξ(θ, ϑ, ρ)g′(z)

Ξ(θ, ϑ, ρ)fℓ(z) + Ξ(θ, ϑ, ρ)gℓ(z)
≺ Γ(X,Y ; 1; σ; Ψ) (10)

where Ξ(θ, ϑ, ρ)fℓ(z) ̸= 0 and Ξ(θ, ϑ, ρ)gℓ(z) ̸= 0 are defined as in (7).

Remark 1.2. If we let θ = σ = 0, ρ = 1, ℓ = 1, U = X = 1, V = Y = −1 and
Ψ(z) = 1+z

1−z , then the class Mσ(θ, ϑ, ρ; U, V,X, Y ) reduces to the class MS∗

introduced and studied by Lewandowski and Stankiewicz in [7].

2. Integral Representation and Subordination Results.

We begin this section by obtaining the integral representation for functions
in the class Mσ(θ, ϑ, ρ; U, V,X, Y ).

Theorem 2.1. f ∈ Mσ(θ, ϑ, ρ; U, V,X, Y ) if and only if there exists
R(z) = Γ (U, V ; 1; σ; Ψ[w(z)]) and T (z) = Γ (X,Y ; 1; σ; Ψ[w(z)]) in P such that

Ξ(θ, ϑ, ρ)fℓ(z) =

∫ z

0

R(ζ)

[
exp

∫ ζ

0

R(η) + T (η)− 2

2η
dη

]
dζ

and

Ξ(θ, ϑ, ρ)gℓ(z) =

∫ z

0

T (ζ)

[
exp

∫ ζ

0

R(η) + T (η)− 2

2η
dη

]
dζ,

where w(z) is the Schwartz function.

Proof. Let f ∈ Mσ(θ, ϑ, ρ; U, V,X, Y ). Replacing z by ενz in (9), (10) and
using the fact that Ξ(θ, ϑ, ρ)f ′(ενz) = Ξ(θ, ϑ, ρ)f ′ℓ(z) we can establish that

zΞ(θ, ϑ, ρ)f ′ℓ(z)

Ξ(θ, ϑ, ρ)fℓ(z) + Ξ(θ, ϑ, ρ)gℓ(z)
≺ Γ(U, V ; 1; σ; Φ)
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and
zΞ(θ, ϑ, ρ)g′ℓ(z)

Ξ(θ, ϑ, ρ)fℓ(z) + Ξ(θ, ϑ, ρ)gℓ(z)
≺ Γ(X,Y ; 1; σ; Ψ).

Therefore f ∈ Mσ(θ, ϑ, ρ; U, V,X, Y ) implies fℓ ∈ Mσ(θ, ϑ, ρ; U, V,X, Y ).
By definition 1.4, (9) and (10) can be equivalently written in the form

zΞ(θ, ϑ, ρ)f ′ℓ(z)

Ξ(θ, ϑ, ρ)fℓ(z) + Ξ(θ, ϑ, ρ)gℓ(z)
= R(z) (11)

and
zΞ(θ, ϑ, ρ)g′ℓ(z)

Ξ(θ, ϑ, ρ)fℓ(z) + Ξ(θ, ϑ, ρ)gℓ(z)
= T (z), (12)

where R(z) = Γ (U, V ; 1; σ; Ψ[w(z)]) and T (z) = Γ (X,Y ; 1; σ; Ψ[w(z)]). Using
Logarithmic differentiation on (11), we get

Ξ(θ, ϑ, ρ)f ′′ℓ (z)

Ξ(θ, ϑ, ρ)f ′ℓ(z)
=
R′(z)

R(z)
+
R(z) + T (z)− 2

2z
.

On integrating the above expression, we get

Ξ(θ, ϑ, ρ)fℓ(z) =

∫ z

0

R(ζ)

[
exp

∫ ζ

0

R(η) + T (η)− 2

2η
dη

]
dζ.

Similarly, from (12) we can establish

Ξ(θ, ϑ, ρ)gℓ(z) =

∫ z

0

T (ζ)

[
exp

∫ ζ

0

R(η) + T (η)− 2

2η
dη

]
dζ.

Adding (11) and (12), retracing the steps as in [7, p. 49] we can establish the
sufficiency part. Hence, the proof of the theorem is completed. □

Letting θ = σ = 0, µ = ρ = ℓ = 1, U = X = 1 and V = Y = −1 in Theorem
2.1, we have the following result.

Corollary 2.2. [7] f ∈ MS∗ if and only if there exists Φ(z), Ψ(z) ∈ P such
that

f(z) =

∫ z

0

Φ(ζ)

[
exp

∫ ζ

0

Φ(η) + Ψ(η)− 2

2η
dη

]
dζ

and

g(z) =

∫ z

0

Ψ(ζ)

[
exp

∫ ζ

0

Φ(η) + Ψ(η)− 2

2η
dη

]
dζ.

Remark 2.1. In general, we note that Γ(U, V ; 1; σ; Ψ) need not be convex
univalent in A. However, the function Γ(U, V ; 1; σ; Ψ) is convex depending on
the choice of Ψ(z) (see [3]).
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Lemma 2.3. Let ℓ be convex in U , with ℓ(0) = d, ν ̸= 0 and Re ν ≥ 0. If
r ∈ H(d, n) and

r(z) +
zr

′
(z)

ν
≺ ℓ(z),

then
r(z) ≺ q(z) ≺ ℓ(z),

where

q(z) =
ν

n zν/n

∫ z

0

t(ν/n)−1ℓ(t)dt.

The function q is convex and is the best (d, n)-dominant.

Theorem 2.4. Let Ξ(θ, ϑ, ρ)f ∈ A for all z ∈ U \{0}. Also let Γ(U, V ; 1; σ; Ψ)
be convex univalent in U with [Γ(U, V ; 1; σ; Ψ)]z=0 = 1 and Re Γ(U, V ; 1; σ; Ψ) >
0. Further, suppose that(

z [Ξ(θ, ϑ, ρ)f ′i(z)]
1
ℓ

∑ℓ
j=1 Ξ(θ, ϑ, ρ)fj(z)

)2 [
3 + 2

{
z(Ξ(θ, ϑ, ρ)f ′′i (z)

Ξ(θ, ϑ, ρ)f ′i(z)

−
∑ℓ
j=1 zΞ(θ, ϑ, ρ)f

′
j(z)∑ℓ

j=1 Ξ(θ, ϑ, ρ)fj(z)

}]
≺ Γ(U, V ; 1; σ; Ψ). (13)

Then
z [Ξ(θ, ϑ, ρ)f ′i(z)]

1
ℓ

∑ℓ
j=1 Ξ(θ, ϑ, ρ)fj(z)

≺ K(z) =
√
Ω(z), (14)

where

Ω(z) =
1

z

∫ z

0

Γ(U, V ; 1; σ; Ψ) dt

and K is convex and is the best dominant.

Proof. Let

r(z) =
z [Ξ(θ, ϑ, ρ)f ′i(z)]

1
ℓ

∑ℓ
j=1 Ξ(θ, ϑ, ρ)fj(z)

(z ∈ U ; µ ≥ 0).

Then r(z) ∈ H(1, 1) with r(z) ̸= 0. By assumption, Γ(U, V ; 1; σ; Ψ) is convex

univalent in U which in turn implies
√
Γ(U, V ; 1; σ; Ψ) is convex and univalent

in U . Suppose that T (z) = r2(z). Then T (z) ∈ H with T (z) ̸= 0 in U .
Using logarithmic differentiation, we have

zT
′
(z)

T (z)
= 2

[
1 +

z(Ξ(θ, ϑ, ρ)f ′′i (z)

Ξ(θ, ϑ, ρ)f ′i(z)
−
∑ℓ
j=1 zΞ(θ, ϑ, ρ)f

′
j(z)∑ℓ

j=1 Ξ(θ, ϑ, ρ)fj(z)

]
.

Thus by (2.4), we have

T (z) + zT
′
(z) ≺ Γ(U, V ; 1; σ; Ψ) (z ∈ U). (15)

Now by Lemma 2.3, we deduce that

T (z) ≺ Ω(z) ≺ Γ(U, V ; 1; σ; Ψ).
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Since ReΓ(U, V ; 1; σ; Ψ) > 0 and Ω(z) ≺ Γ(U, V ; 1; σ; Ψ), we have ReΩ(z) > 0.√
Ω(z) is univalent by the virtue of Ω being univalent and r2(z) ≺ Ω(z) implies

that r(z) ≺
√
Ω(z) which establishes the assertion. □

Corollary 2.5. Let Ξ(θ, ϑ, ρ)f ∈ A for all z ∈ U \ {0}. If

Re

{(
z
[
Ξ(θ, ϑ, ρ)f ′

i(z)
]

1
ℓ

∑ℓ
j=1 Ξ(θ, ϑ, ρ)fj(z)

)2 [
3 + 2

{
z(Ξ(θ, ϑ, ρ)f ′′

i (z)

Ξ(θ, ϑ, ρ)f ′
i(z)

−
∑ℓ

j=1 zΞ(θ, ϑ, ρ)f ′
j(z)∑ℓ

j=1 Ξ(θ, ϑ, ρ)fj(z)

}]}
> 0,

then

Re

[
z
[
Ξ(θ, ϑ, ρ)f ′

i(z)
]

1
ℓ

∑ℓ
j=1 Ξ(θ, ϑ, ρ)fj(z)

]
> ω(ς),

where ω(ς) =
√

[2(1 − ς) · log 2 + (2ς − 1)]. The inequality is sharp

Proof. Let σ = 0, U = 1, V = −1 and Ψ(z) = 1+(2ς−1)z
1+z , 0 ≤ ς < 1 in Theorem

2.4, we can easily get the desired result. □

If we let θ = 0 and ρ = 1 in the Corollary 2.5, then we have the following

Corollary 2.6. Let f ∈ A with f
′
(z) and f(z) ̸= 0 for all z ∈ U \ {0}. If

Re


(
zf

′
(z)

f(z)

)2 [
3 +

2 zf
′′
(z)

f ′(z)
− 2 zf

′
(z)

f(z)

] > ς,

then

Re
zf

′
(z)

f(z)
> ω(ς),

where ω(ς) =
√
[2(1− ς) · log 2 + (2ς − 1)]. This inequality is sharp

3. Coefficient Inequalities

Theorem 3.1. Let fν(z) = z +
∑∞
n=2 aν, nz

n be defined in A and let f ∈
Aσ(θ, ϑ, ρ; U, V ; Ψ). Then for n ≥ 2,

|nan − bn| ≤
(U − V )(1− σ)|R1|

∑n−1
t=1 |∆n(ϑ, ρ, θ) bt|

2 |∆n(ϑ, ρ, θ)|
, (16)

where bn = 1
ℓ [a1, n + · · ·+ aℓ, n] and ∆n(ϑ, ρ, θ) =

Γ(ϑ)(ρ)n−1

Γ(ϑ+θ(n−1))(n−1)! .

Proof. By the definition of Aσ(θ, ϑ, ρ; U, V ; Ψ), we have

z [Ξ(θ, ϑ, ρ)f ′i(z)]
1
ℓ

∑ℓ
ν=1 Ξ(θ, ϑ, ρ)fν(z)

= p(z), (17)

where p(z) ∈ P is subordinate to p(z) ≺ (U+1)ψ(z)−(U−1)
(V+1)ψ(z)−(V−1) and Ψ(z) is defined as

in (4).
Equivalently, (17) can be written as

∞∑
n=2

∆n(ϑ, ρ, θ)nanz
n =

( ∞∑
n=1

pnz
n

)( ∞∑
n=1

∆n(ϑ, ρ, θ)bnz
n

)
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(b1 = ∆1(ϑ, ρ, θ) = 1) .

Equating the coefficient of zn on both sides

|[nan − bn] ∆n(ϑ, ρ, θ)| = [∆n−1(ϑ, ρ, θ)bn−1p1 + · · ·+ pn−1∆1(ϑ, ρ, θ)b1]

=

n−1∑
t=1

|pt∆n(ϑ, ρ, θ) bt| ≤
n−1∑
t=1

|pt∆n(ϑ, ρ, θ)| |bt|.

From [3, Lemma 4], we have |pt| ≤ |R1|(U−V )(1−σ)
2 , t ≥ 1. On computation

we have

|[nan − bn]| ≤
(U − V )(1− σ)|R1|

∑n−1
t=1 |∆n(ϑ, ρ, θ) bt|

2 |∆n(ϑ, ρ, θ)|
. (18)

□

If we let σ = 0, fi(z) = f(z), fν(z) = ω−νjf(ωνz) (f ∈ A; ν = 1, . . . , ℓ; ω =
e2πi/n) in Theorem 3.1, then we have:

Theorem 3.2. Let Ξ(θ, ϑ, ρ)fj, ℓ(z) =
1
ℓ

∑ℓ
ν=1 ε

−νj [Ξ(θ, ϑ, ρ)f(ενz)]. If f ∈ A
satisfies the condition

zΞ(θ, ϑ, ρ)f ′(z)

Ξ(θ, ϑ, ρ)fj, ℓ(z)
≺ (U + 1)Ψ(z)− (U − 1)

(V + 1)Ψ(z)− (V − 1)
,

then for n ≥ 2, −1 ≤ V < U ≤ 1,

|an| ≤
1

|∆n(ϑ, ρ, θ)|

n−1∏
t=1

|(U − V )R1Υt,j − 2 [t−Υt,j ]V |
2 |(t+ 1)−Υt+1,j |

, (19)

where Υn,j =
1
ℓ

∑ℓ
ν=1 ω

(n−j)ν .

Proof. By definition, Ξ(θ, ϑ, ρ)fj, ℓ(z) =
∑∞
n=1 ∆n(ϑ, ρ, θ)Υn,janz

n, where

Υn,j =
1
ℓ

∑ℓ
ν=1 ω

(n−j)ν (Υ1,j = 1 = a1 = ∆1(ϑ, ρ, θ)). Replacing bn = Υn,jan in
(18), we have

|an| ≤
(U − V )(1− σ)|R1|

∑n−1
t=1 |∆n(ϑ, ρ, θ)Υn,jan|

2 |∆n(ϑ, ρ, θ)| |n−Υn,j |
. (20)

Let n = 2 in (20). Then

|a2| ≤
(U − V ) |R1 Υ1,j |

2 |∆2(ϑ, ρ, θ)| |2−Υ2,j |
. (21)

Letting n = 2 in (19), we get

|a2| ≤
1

|∆2(ϑ, ρ, θ)|

2−1∏
t=1

|(U − V )R1Υt,j − 2 [t−Υt,j ]V |
2 |(t+ 1)−Υt+1,j |
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=
1

|∆2(ϑ, ρ, θ)|
|(U − V )R1Υ1,j − 2 [1−Υ1,j ]V |

2 |2−Υ2,j |
=

(U − V ) |R1 Υ1,j |
2 |∆2(ϑ, ρ, θ)| |2−Υ2,j |

.

(22)

From (21) and (22), we find that the hypothesis is correct for n = 2. Using
induction hypothesis and retracing the steps as in [13, Theorem 2.1], we can
establish the assertion of the theorem. □

If we let θ = 0, ρ = 1, σ = 0 and Ψ(z) = 1+z
1−z in Theorem 3.2, then we get

the following result.

Corollary 3.3. [1, Theorem 2] If f ∈ A satisfies the condition

zf ′(z)

fj, ℓ(z)
≺ 1 + Uz

1 + V z
,

then for n ≥ 2, −1 ≤ V < U ≤ 1,

|an| ≤
n−1∏
t=1

|Υt,j | [(U − V )− 1] + t

|t+ 1−Υt+1,j |
.

If we let j = ℓ = 1, U = 1− 2η and V = −1 in corollary 3.3

Corollary 3.4. If f ∈ A satisfies the condition

Re
zf ′(z)

f(z)
> η,

then for n ≥ 2,

|an| ≤
n−1∏
t=0

2(1− η) + t

1 + t
.

Remark 3.1. Results obtained by Senguttuvan et al. [13] can be obtained
as special case of Theorem 3.2, except for a difference in the coefficient of the
defined operator.
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