DOI QR코드

DOI QR Code

DIVISIBILITY AND ARITHMETIC PROPERTIES OF CERTAIN ℓ-REGULAR OVERPARTITION PAIRS

  • ANUSREE ANAND (Department of Mathematics, Ramanujan School of Mathematical Sciences, Pondicherry University) ;
  • S.N. FATHIMA (Department of Mathematics, Ramanujan School of Mathematical Sciences, Pondicherry University) ;
  • M.A. SRIRAJ (Department of Mathematics, Vidyavardhaka College of Engineering) ;
  • P. SIVA KOTA REDDY (Department of Mathematics, JSS Science and Technology University)
  • 투고 : 2024.02.13
  • 심사 : 2024.05.12
  • 발행 : 2024.07.30

초록

For an integer ℓ ≥ 1, let ${\bar{B}}_{\ell}(n)$ denotes the number of ℓ-regular over partition pairs of n. For certain conditions of ℓ, we study the divisibility of ${\bar{B}}_{\ell}(n)$ and arithmetic properties for ${\bar{B}}_{\ell}(n)$. We further obtain infinite family of congruences modulo 2t satisfied by ${\bar{B}}_3(n)$ employing a result of Ono and Taguchi (2005) on nilpotency of Hecke operators.

키워드

과제정보

We would like to thank the anonymous reviewers for their constructive suggestions.

참고문헌

  1. A.M. Alanazi, A.O. Munagi and J.A. Sellers, An infinite family of congruences for ℓ-regular overpartitions, Integers 16 (2016), #A37, 8 Pages. 
  2. K. Bringmann and J. Lovejoy, Rank and congruences for overpartition pairs, Int. J. Number Theory 4 (2008), 303-322.  https://doi.org/10.1142/S1793042108001353
  3. S. Corteel and J. Lovejoy, Overpartitions, Trans. Am. Math. Soc. 356 (2004), 1623-1635. 
  4. S.N. Fathima, N.V. Majid, M.A. Sriraj and P. Siva Kota Reddy, Fu's pα dots bracelet partition, Glob. Stoch. Anal. 11 (2024), 1-10. 
  5. B. Gordon and K. Ono, Divisibility of certain partition functions by powers of primes, Ramanujan J. 1 (1997), 25-34.  https://doi.org/10.1023/A:1009711020492
  6. M.D. Hirschhorn and J.A. Sellers, Arithmetic properties of partitions with odd parts distinct, Ramanujan J. 22 (2010), 273-284.  https://doi.org/10.1007/s11139-010-9225-6
  7. M.D. Hirschhorn, The power of q: A personal journey, Developments in Mathematics, 49, Cham: Springer, 2017. 
  8. J. Lovejoy, Gordon's theorem for overpartitions, J. Comb. Theory, Ser. A 103 (2003), 393-401.  https://doi.org/10.1016/S0097-3165(03)00116-X
  9. Y. Martin, Multiplicative η-quotients, Trans. Am. Math. Soc. 348 (1996), 4825-4856.  https://doi.org/10.1090/S0002-9947-96-01743-6
  10. M.S. Mahadeva Naika and C. Shivashankar, Arithmetic properties of ℓ-regular overpartition pairs, Turk. J. Math. 41 (2017), 756-774.  https://doi.org/10.3906/mat-1512-62
  11. K. Ono and Y. Taguchi, 2-adic properties of certain modular forms and their applications to arithmetic functions, Int. J. Number Theory 1 (2005), 75-101.  https://doi.org/10.1142/S1793042105000066
  12. C. Ray and R. Barman, Infinite families of congruences for k-regular overpartitions, Int. J. Number Theory 14 (2018), 19-29.  https://doi.org/10.1142/S1793042118500021
  13. C. Ray and R. Barman, Arithmetic properties of cubic and overcubic partition pairs, Ramanujan J. 52 (2020), 243-252.  https://doi.org/10.1007/s11139-019-00136-1
  14. C. Ray and R. Barman, On Andrews' integer partitions with even parts below odd parts, J. Number Theory 215 (2020), 321-338.  https://doi.org/10.1016/j.jnt.2020.02.001
  15. C. Ray and K. Chakraborty, Certain eta-quotients and ℓ-regular overpartitions, Ramanujan J. 57 (2022), 453-470.  https://doi.org/10.1007/s11139-020-00322-6
  16. J.-P. Serre, Valeurs propres des operateurs de Hecke modulo ℓ, Asterisque 24-25 (1975), 109-117 
  17. E.Y.Y. Shen, Arithmetic properties of l-regular overpartitions, Int. J. Number Theory 12 (2016), 841-852.  https://doi.org/10.1142/S1793042116500548
  18. C. Shivashankar and D.S. Gireesh, New congruences for ℓ-regular overpartition pairs, Afr. Mat. 33 (2022), Id/No 82, 12 Pages.