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THEORY OF HYPERSURFACES OF A FINSLER SPACE

WITH THE GENERALIZED SQUARE METRIC
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Abstract. The emergence of generalized square metrics in Finsler geom-

etry can be attributed to various classification concerning (α, β)-metrics.
They have excellent geometric properties in Finsler geometry. Within the

scope of this research paper, we have conducted an investigation into the

generalized square metric denoted as F (x, y) =
[α(x,y)+β(x,y)]n+1

[α(x,y)]n
, focusing

specifically on its application to the Finslerian hypersurface. Furthermore,

the classification and existence of first, second, and third kind of hyper-

planes of the Finsler manifold has been established.
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1. Introduction

Let M be an n-dimensional differential manifold. Also, let TM be a tangent
bundle of M , which is a disjoint union of tangent spaces at all points of p ∈ M .
Define a Finsler metric on the differentiable manifold M . This Finsler metric
is known as Finsler fundamental fuction on the manifold M . Let us first define
what is exactly mean by Finsler fundamental function.

Definition 1.1. (Finsler metric)
We say a function F : TM → R is a Finsler metric or Finsler fundamental
function ( [8]) on the manifold M if F satisfy the following conditions:

(1) F is C∞ away from zero vectors of the tangent spaces.

(2) Positive homogeneity of function F :
F (x, λy) = λF (x, y), ∀ λ > 0; for x ∈ M and all y ∈ TxM .
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Figure 1. This figure shows the tangent vector λy ∈ TxM ,
λ > 0, is λ times the tangent vector y ∈ TxM .

(3) Strict convexity of the function F :
F : TM → R is strictly convex over the tangent bundle TM .

It is important to note that strictly convex condition is equivalent to the hes-

sian matrix [gij ], where i, j ∈ {1, 2, 3, ......dim(M)}, defined by 1
2

∂2F 2

∂yi∂yj (x, y) =

gij(x, y) is positive definite for any (x, y) ∈ TM . It is the convexity condition
on the Finsler metric F that guaranties for the arc length minimization, given
by the following formula of the admissible curves γ : [a, b] → M belonging to the
set C∞[a, b]

s[γ(t)] =

∫ b

a

F (γ(t), γ̇(t))dt (1.1)

can be achieved.

In other words, the convexity condition on the Finsler metric is a geometric
requirement that makes sure that the length of a curve in Figure 2 can be de-
fined and that the arc length functional s[γ(t)] is well-behaved, particularly for
the purpose of minimizing or finding geodesics with respect to the given Finsler
metric F . Without convexity, the concept of length and the corresponding op-
timization problems will not make sense or may not have unique solutions. One
can see above facts relating convexity condition in any text book of calculus of
variations.

Definition 1.2. (Finsler Manifold)
A differentiable manifold denoted as M , when equipped with a Finsler metric
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Figure 2. This figure shows the curves γ : [a, b] → M over
the manifold M such that γ(a) = P and γ(b) = Q.

F (x, y), is referred to as a Finsler manifold or Finsler space. This is typically
denoted as (M,F ).

Definition 1.3. ((α, β)-metric)
Consider a Finsler space denoted as (M,F (x, y)), where F (x, y) represents the
Finsler fundamental function. This space is said to possess an (α, β)-metric
( [10]) if the fundamental function F (x, y) can be expressed as

F (x, y) = F (α(x, y), β(x, y)) .

That is, F is a composite function of x and y.

The class of (α, β)-metrics was originally introduced by the renowned geome-
ter M. Matsumoto [8]. Let us define generalized square (α, β)-metric as follows:

Example 1.4. The metric defined byF (x, y) = [α(x,y)+β(x,y)]n+1

[α(x,y)]n is called gen-

eralized square metric. We say the space
(
M,F (x, y) = [α(x,y)+β(x,y)]n+1

[α(x,y)]n

)
con-

structed with generalized square metric the generalized square space.

This was the “generalized square metric” that draws our attention to work
with hypersurface of a Finsler space. Let us first define the meaning of a hyper-
surface:

Definition 1.5. ( [7]) A hypersurface is an embedded submanifold of codimen-
tion 1. That is, a submanifold of dimension less that 1 of a given manifold is
called hypersuraface of the underlying manifold.

A submanifold of dimension n− 1 is generally denoted by the symbol Mn−1.
In this paper, we will also denote a hupersurafce of a manifold M by the symbol
Mn−1.
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Example 1.6. Let M = R2 be a manifold. Then a straight line in Figure 3
denoted by Mn−1 = M2−1 = M1 and defined by linear equation in two variables
x and y, i.e., ax + by + c = 0 is a hypersuarface of the underlying manifold
M = R2, because dim(M)=dim(R2)=2 while the dim(Mn−1)=n−1 = 2−1 = 1.

Figure 3. The line represented by eqution ax+by+c=0 is a
hypersurface of the 2-dimensional manifold R2.

Example 1.7. Let M = R3 be a manifold. Then the unit sphere in Figure
4 denoted by Mn−1 = M3−1 = M2 and defined by x2 + y2 + z2 = 1 is a hy-
persuarface of the underlying manifold M = R3, because dim(M)=dim(R3)=3
while the dim(Mn−1)=n− 1 = 3− 1 = 2.

Figure 4. The sphere represented by equation
x2 + y2 + z2 = 16 is a hypersurface of the 3-dimensional

manifold R3.



Theory of hypersurfaces of a Finsler space with the generalized square metric 883

Matsumoto [9], a prominent Finslerian, was the first person who studies the
hypersurfaces and charecterised the special hypersurfaces Mn−1 of a Finsler
manifold. He, specifically, characterised the properties of hypersurface Mn−1 of
Randers space [13]. After this, the number of Finslerians dramatically increased
to show their interest in Finsler hypersurface Mn−1. Many authors around the
world ( [6], [5], [3], [14], [15], [18], [2], [11], [1], [4], [19], [20], [17]) did study
the properties of special hypersurface Mn−1 and derived the conditions under
which a Finsler hypersurface Mn−1 of a Finsler manifold (M,F (x, y)) becomes
a hyperplane of first kind, second kind but not of the third kind. Aim of the
present paper is to investigate the hypersurface Mn−1 of Finsler space using

generalized square metric F (x, y) = [α(x,y)+β(x,y)]n+1

[α(x,y)]n .

2. Preliminaries

We consider the Finsler space (M,F ), where F is the generalized square
metric, that is given by

F (α, β) =
(α+ β)n+1

αn
. (2.1)

Calculate all the partial derivatives of equation (2.1) up to second order, we get

Fα =
(α− nβ)(α+ β)n

αn+1
, (2.2)

Fβ =
(n+ 1)(α+ β)n

αn
, (2.3)

Fαα =
n(n+ 1)β2(α+ β)n−1

αn+2
, (2.4)

Fββ =
n(n+ 1)(α+ β)n−1

αn
, (2.5)

Fαβ = −n(n+ 1)β(α+ β)n−1

αn+1
. (2.6)

We already know that, in a general Finsler manifold (M,F ), the normalized
element of support li =

∂F
∂yi

and the angular metric tensor hij [13] are evaluated

by the following formula:

li =
Fαyi
α

+ Fβbi, (2.7)

hij = paij + q0bibj + q1(biyj + bjyi) + q2yiyj (2.8)

and the coefficients are defined and calculated as follows:

yi = aijy
j ,

p =
FFα

α
=

(α− nβ)(α+ β)2n+1

α2n+2
, (2.9)



884 Sonia Rani, Vinod Kumar, Mohammad Rafee

q0 = FFββ =
n(n+ 1)(α+ β)2n

α2n
, (2.10)

q1 =
FFαβ

α
= −n(n+ 1)β(α+ β)2n

α2n+2
, (2.11)

q2 =
F (Fαα − Fα

α )

α2
,

=
(α+ β)2n {nβ(n+ 2β + nβ)− α(α+ β)}

α2n+4
. (2.12)

We also know that, in a general Finsler manifold (M,F ), the fundamental

metric tensor gij =
1
2

∂2F 2

∂yi∂yj is evaluated by [13] the following formula:

gij = paij + p0bibj + p1(biyj + bjyi) + p2yiyj , (2.13)

whereas its coefficients p, p0, p1 and p2 are defined and calculated as follows:

p =
FFα

α
,

=
(α− nβ)(α+ β)2n+1

α2n+2
, (2.14)

p0 = q0 + F 2
β ,

=
(n+ 1)(2n+ 1)(α+ β)2n

α2n
, (2.15)

p1 = q1 +
pFβ

F
,

=
(n+ 1)(α+ β)2n(α− 2nβ)

α2n+2
, (2.16)

p2 = q2 +
p2

F 2
,

=
β(α+ β)2n

{
2n2β + 2nβ − nα− α

}
α2(n+ 2)

. (2.17)

We know that, in a Finsler manifold (M,F ), reciprocal metric tensor of a

fundamental metric tensor gij = 1
2

∂∂F 2

∂yi∂yj is denoted by gij and is evaluated by

the formula [13]

gij =
aij

p
− S0b

ibj − S1(b
iyj + bjyi)− S2y

iyj , (2.18)

whereas its coefficients bi, S0, S1 and S2 are evaluated by the following formulae:

bi = aijbj ,

S0 =
pp0 + (p0p2 − p21)α

2

pζ
, (2.19)
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S1 =
pp1 + (p0p2 − p21)β

pζ
, (2.20)

S2 =
pp2 + (p0p2 − p21)b

2

pζ
, (2.21)

ζ = p(p+ p0b
2 + p1β) + (p0p2 − p21)(α

2b2 − β2), (2.22)

where b2 = aijb
ibj .

Let us define the hv-torsion tensor Cijk = 1
2
∂gij
∂yk as follows [16]:

Cijk =
p1(hijmk + hjkmi + hkimj) + γ1mimjmk

2p
(2.23)

and its coefficients γ1 and mi are evaluated by the formulae

γ1 = p
∂p0
∂β

− 3p1q0,mi = bi −
yiβ

α2
. (2.24)

Now we put

2Eij = bij + bji, (2.25)

2Fij = bij − bji, (2.26)

where bij = ∇jbi. Let CΓ = (Γ∗i
jk,Γ

∗i
0k, C

i
jk) be Cartan connection of (M,F ).

The difference tensor Di
jk = Γ∗i

jk − Γi
jk of the special Finsler manifold (M,F ) is

given by [16]

Di
jk =BiEjk + F i

kBj + F i
jBk +Bi

jb0k +Bi
kb0j − b0mgimBjk − Ci

jmAm
k

− Ci
kmAm

j + CjkmAm
s gis + λs(Ci

jmCskm + Ci
kmCm

sj − Cm
jkC

i
ms), (2.27)

where

Bk = p0bk + p1yk, (2.28)

Bi = gijBj , (2.29)

Bij =
p1(aij − yiyj

α2 ) + ∂p0

∂β mimj

2
, (2.30)

Bk
i = gkjBji, (2.31)

Am
k = Bm

k E00 +BmEk0 +BkF
m
0 +B0F

m
k , (2.32)

λm = BmE00 + 2B0F
m
0 , (2.33)

F k
i = gkjFji, (2.34)

B0 = BiY
i. (2.35)

Here as well as henceforward ’0’ denotes tensorial contraction with yi besides
p0,q0 and S0.”
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3. Induced Cartan Connection

Let (M,F ) be a Finsler manifold, where F (α, β) = (α+β)n+1

αn is generalized

square metric. Also, let Mn−1 be a hypersurface of the Finsler manifold (M,F )
whose hypothetical picture is depicted in the Figure 4.

Figure 5. A hypothetical picture of hypersurface Mn−1 of
the 3-dimensional Finsler manifold (M,F ).

We will describe this hypersurface Mn−1 by following parametric equations:

xi = xi(uα), (i = 1, 2, 3, ........n;α = 1, 2, 3, ........n− 1), (3.1)

where uα is a parameter that represents coordinates on the hypersurface
Mn−1. Now differentiating the equation (3.1) of the hypersurface with respect

to parameters uα, we get Bi
α = ∂xi

∂uα . Here each Bi
α = ∂xi

∂uα for (α=1,2,3,........n-1)

represents components of tangent vectors and these tangent vectors Bi
α repre-

sent a tangent space at a point p of the hypersurface Mn−1 . Let the matrix

corresponding to first derivative Bi
α = ∂xi

∂uα be [Bi
α] = [ ∂x

i

∂uα ], and it has maximal

rank , namely, (n-1). To introduce a Finsler structure in the hypersurface Mn−1

, the supporting element yi at a point uα of Mn−1 is assumed to be tangential
to Mn−1, so that we may write

yi = Bi
α(u)v

α. (3.2)

Therefore vα is the element of support of hypersurface Mn−1 at the point
uα. The metric tensor gαβ and hv-torsion tensor Cαβγ of hypersurface Mn−1

are defined by

gαβ = gijB
i
αB

j
β , Cαβγ = CijkB

i
αB

j
βB

k
γ . (3.3)
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Now the unit normal vector N i(u, v) at an arbitrary point uα of the hyper-
surface Mn−1 is defined as follows:

Definition 3.1. A vector N i(u, v) at a point uα of the hypersurface Mn−1 is
said to be unit normal vector if

gij(x(u, v), y(u, v))B
i
αN

j = 0, gij(x(u, v), y(u, v))N
iN j = 1. (3.4)

Definition 3.2. We say the tensor hij an angular metric tensor, if hij satisfies
the following conditions:

hαβ = hijB
i
αB

j
β , hijB

i
αN

j = 0, hijN
iN j = 1. (3.5)

The induced Cartan connection ICΓ = (Γ∗α
βγ , G

α
β , C

α
βγ) on hypersurfaceMn−1

induced from the Cartan’s connection CΓ = (Γ∗i
jk,Γ

∗i
0k, C

i
jk) is given by [9] Γ∗α

βγ =

Bα
i (B

i
βγ + Γ∗i

jkB
j
βB

k
γ ) +Mα

β Hγ , G
α
β = Bα

i (B
i
0β + Γ∗i

0jB
j
β),

Cα
βγ = Bα

i C
i
jkB

j
βB

k
γ , (3.6)

where second fundamental v-tensorMβγ is defined byMα
β = gαγMβγ and normal

curvature vector Hβ is defined by Hβ = Ni(B
i
0β + Γ∗i

0jB
j
β), where Bi

βγ =
∂Bi

β

∂Uγ ,

Bi
0β = Bi

αβv
α. The quantities Mβγ and Hβ appeared in above equations are

called the second fundamental v-tensor and normal curvature vector respec-
tively [9]. The second fundamental h-tensor Hβγ is defined as [9]

Hβγ = Ni(B
i
βγ + Γ∗i

jkB
j
βB

k
γ ) +MβHγ , (3.7)

where

Mβ = Ci
jkB

j
βNiN

k = CijkB
i
βN

jNk. (3.8)

The relative h-covariant derivative and v-covariant derivative of projection factor
Bi

α are respectively given by

Bi
α|β = HαβN

i, (3.9)

Bi
α|β = MαβN

i. (3.10)

The equation (3.8) shows that Hβγ is not always symmetric and

Hβγ −Hγβ = MβHγ −MγHβ . (3.11)

Thus the above equation simplifies to

H0γ = Hγ , Hγ0 = Hγ +MγH0. (3.12)

Lemma 3.3 ( [9]). The normal curvature H0 = Hβv
β vanishes if and only if

normal curvature vector Hβ vanishes.

Lemma 3.4 ( [9]). A hypersurface Mn−1is a hyperplane of first kind if and only
if Hα = 0.

Lemma 3.5 ( [9]). A hypersurface Mn−1 is a hyperplane of second kind with
respect to Cartan connection CΓ if and only if Hα = 0 and Hαβ = 0.
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Lemma 3.6 ( [9]). A hypersurface Mn−1 is a hyperplane of third kind with
respect to Cartan connection CΓ if and only if Hα = 0, Hαβ = 0 and Mαβ = 0.

4. Hypersurface Mn−1 of the special Finsler space

In this paper we are specifically confined to Finslerian hypersurfaces Mn−1.
Let us proof the following propositions in context of Finslerian hypersurfaces.

Proposition 4.1. Let (M,F ) be a Finsler manifold, where F (α, β) = (α+β)n+1

αn ,

n ∈ N , is a generalized square metric and Mn−1 be its hypersurface. Then fun-
damental function of the hypersurface Mn−1 induced from the Finsler manifold
(M,F ) is a Riemannian metric.

Proof. Let level equation of the hypersurface Mn−1 be given by b(x) = c, where
c is a real number. Take the gradient of the level equation representing hyper-
surface Mn−1, we get bi(x) = ∂ib. Again consider the parametric equation of
the same hypersurface Mn−1 as xi = xi(uα). Differentiating the equation of
hypersurface b(x(u)) = c with respect to parameter uα, we get

∂b(x(u))

∂xi

∂xi

∂uα
= 0,

bi(x)B
i
α = 0,

where bi(x) =
∂b(x(u))

∂xi and Bi
α = ∂xi

∂uα .

This implies that bi(x) are normal vector field (covariant component) of hy-
persurface Mn−1. Thus at any point of the hypersurface Mn−1 we now have

biB
i
α = 0 (4.1)

biy
i = 0, i.e., β = 0. (4.2)

Now, we will see how generalized square metric F = (α+β)n+1

αn , n ∈ N , induces

a metric on the hypersurface Mn−1. In this case we will denote induced metric
by F̄ . First consider the generalized square metric

F =
(α+ β)n+1

αn

=
(
√
aijyiyj + biy

i)n+1

(
√
aijyiyj)n

=

(√
aijBi

α(u)B
j
β(u)v

αvβ + biy
i
)n+1

(√
aijBi

α(u)B
j
β(u)v

αvβ
)n ,

which is the general induced metric on the corresponding hypersurface Mn−1.
Using equation (4.2), general induced metric of the hypersurface becomes

F (u, v) =
√

aαβvαvβ , (4.3)
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where aαβ = aijB
i
α(u)B

j
β(u).

Thus function represented by equation (4.3) is fundamental function or the
metric of the hypersurface Mn−1 induced from the ambient Finsler manifold
(M,F ). The fundamental function of the hypersurface Mn−1 represented by
equation (4.3) do not have β component as β = biy

i = 0 over the hypersurface
Mn−1 therefore fundamental function of the hypersurface Mn−1 induced from
the Finsler manifold (M,F ) is a Riemannian metric. □

Proposition 4.2. Let (M,F ) be a Finsler manifold, where F (α, β) = (α+β)n+1

αn ,

n ∈ N , is a generalized square metric and Mn−1 be its associated hypersurface.
Then the covariant and contravariant components of normal vector field on the
hypersurface Mn−1 are given by

(1) bi =
√

b2

1+n(n+1)Ni,

(2) bi =
√
b2 {1 + n(n+ 1)}N i + b2

α yi.

Proof. It is given that Mn−1 is a hypersurface of the manifold (M,F ), where

F (α, β) = (α+β)n+1

αn , n ∈ N , is a generalized square metric. Moreover, we know

from equation (4.2) that β = 0 over the hypersurface Mn−1. Let us calculate
the value of p, p0, p1 and p2. For that, substitute the value of β = 0 into
equations (2.14), (2.15), (2.16), and (2.17), we get

p = 1, p0 = (n+ 1)(2n+ 1), p1 =
n+ 1

α
, p2 = 0. (4.4)

Now put the values of p, p0, p1, p2 into equations (2.19), (2.20), (2.21) and (2.22),
we get

S0 =
n(n+ 1)

1 + n(n+ 1)b2
(4.5)

S1 =
n+ 1

α {1 + n(n+ 1)b2}
(4.6)

S2 = − (n+ 1)2b2

α2 {1 + n(n+ 1)b2}
(4.7)

ζ = 1 + n(n+ 1)b2. (4.8)

Substituting the values of p, S0, S1, S2 from the equations (4.4), (4.5), (4.6)
and (4.7) into equation (2.18), we have

gij =
aij

1
− n(n+ 1)

1 + n(n+ 1)b2
× bibj − n+ 1

α {1 + n(n+ 1)b2}
× (biyj + bjyi)+

(n+ 1)2b2

α2 {1 + n(n+ 1)b2}
× yiyj . (4.9)

Multiplying equation 4.9 by bibj and using β = biy
i = 0, over the hypersurface

Mn−1, it becomes gijbibj = b2

1+n(n+1) . Now from the above equation and using
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the equation (3.4), we get

bi =

√
b2

1 + n(n+ 1)
Ni, (4.10)

which is the covariant component of the normal vector field on the hypersurface
Mn−1. Now from (4.9) and (4.10) we get

bi = aijbj

=
√
b2 {1 + n(n+ 1)}N i +

b2

α
yi, (4.11)

which is the contravariant component of the normal vector field on the hyper-
surface Mn−1. □

Proposition 4.3. Let (M,F ) be a Finsler manifold, where F (α, β) = (α+β)n+1

αn ,

n ∈ N , is a generalized square metric and Mn−1 be its associated hypersurface.
Then second fundamental v-tensor of hypersurface Mn−1 is given by

Mαβ = (n+1)
2α

(√
b2

1+n(n+1)

)
hαβ

and second fundamental h-tensor Hαβ is symmetric, i.e., Hαβ = Hβα.

Proof. It is given that Mn−1 is a hypersurface of the manifold (M,F ), where

F (α, β) = (α+β)n+1

αn , n ∈ N , is a generalized square metric. Moreover, we know

from equation (4.2) that β = 0 over the hypersurface Mn−1. Put the value of
β = 0 into equations (2.14), (2.15), (2.16), and (2.17), we get

p = 1, p0 = (n+ 1)(2n+ 1), p1 =
n+ 1

α
, p2 = 0.

Now, put the values of p, p0, p1 and p2 obtained above into equation 2.13, we
get fundamental metric tensor of the hypersurace Mn−1

gij = aij + (n+ 1)(2n+ 1)bibj +
(n+ 1)

α
(biyj + bjyi). (4.12)

Let us calculate the value of q0, q1 and q2. For that, substitute the value of
β = 0 into equations (2.10), (2.11), and (2.12), we get

q0 = n(n+ 1), q1 = 0, q2 = − 1

α2
.

Substituting the values of p, q0, q1 and q2 in equation 2.8, we get angular
metric tensor of the hypersurface Mn−1

hij = aij + n(n+ 1)bibj −
1

α2
yiyj . (4.13)
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Differentiating equation 2.15 with respect to β, we have

∂p0
∂β

=
2n(n+ 1)(2n+ 1)(α+ β)2n−1

α2n
.

We know from equation (4.2) that β = 0 over the hypersurface Mn−1 so put
the value of β = 0 into above equation and equation 2.24, we get

∂p0
∂β

=
2n(n+ 1)(2n+ 1)

α

γ1 =
n(n2 − 1)

α
mi = bi.

Using the values of p, p1, γ1 and mi in equation 2.23, hv-torsion tensor on the
hypersurface Mn−1, becomes

Cijk =
(n+ 1)

[
(hijbk + hjkbi + hkibj) + n(n2 − 1)bibjbk

]
2α

. (4.14)

Substituting the value of Cijk from equation 4.14 in equation 3.8, we get

Mαβ =
(n+ 1)

2α

(√
b2

1 + n(n+ 1)

)
hαβ . (4.15)

Again, substituting the value of Cijk from equation 4.14 into equation 3.8, we
get

Mα = 0. (4.16)

Substituting the value of Mα from the equation 4.16 in equation 3.12, we get

Hαβ = Hβγ ,

which shows that Hαβ is symmetric. □

Theorem 4.4. Let (M,F ) be a Finsler manifold, where F (α, β) = (α+β)n+1

αn ,

n ∈ N , is a generalized square metric and Mn−1 be its associated hypersurface.
Then the hypersurface Mn−1 will be hyperplane of first kind if and only if 2bij =
bicj + bjci. Moreover we show that second fundamental tensor Hαβ of Mn−1 is

proportional to it’s angular metric tensor hαβ. That is, Hαβ = c0b√
1+n(n+1)

hαβ.

Proof. Let us differentiate equation 4.1 with respect to β, we get

bi|βB
i
α + biB

i
α|β = 0. (4.17)
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Put the value of Bi
α|β from equation 3.10 and bi|β = bi|jB

j
β + bi|jN

jHβ into

equation 4.17, we get

bi|jB
j
βB

i
α + bi|jN

jHβB
i
α + biHαβN

i = 0. (4.18)

We know that bi|j = −bhC
h
ij . Put the value of bh from equation 4.10 into above

expression produces bi|j = 0. Using bi|jB
i
αN

j = 0 and equation 4.10 in the

equation 4.18 and then using the fact that NiN
i = 1, we get

bi|jB
j
βB

i
α +

√
b2

1 + n(n+ 1)
Hαβ = 0. (4.19)

It is obvious that bi|j is symmetric. Now contracting 4.19 with vβ first and then
with vα respectively and using the equations 3.2, 3.12 and 4.16, we get

bi|jB
i
αy

j +

√
b2

1 + n(n+ 1)
Hα = 0 (4.20)

bi|jy
iyj +

√
b2

1 + n(n+ 1)
H0 = 0. (4.21)

We know from the Lemma 3.3 and Lemma 3.4, a hypersurface Mn−1 is a hyper-
plane of first kind if and only if normal curvature vanishes, i.e., H0 = 0. Using
the value H0 = 0 in equation 4.21 we find that hypersurface Mn−1 is a hyper-
plane of first kind if and only if bi|jy

iyj = 0. This bi|j is the covariant derivative

of with respect to Cartan connection CΓ of Finsler space F , it may depend on yi.
Moreover ∇jbi = bij is the covariant derivative of bi with respect to Riemannian
connection Γi

jk constructed from aij(x), therefore bij dose not depend on yi. We
shall consider the difference bi|j − bij of above covariant derivatives in further

discussion. The difference tensor Di
jk = Γ∗i

jk − Γi
jk is given by equation 2.27.

Since bi is a gradient vector, from equations 2.25 and 2.26 we have

Eij = bij , Fij = 0, F i
j = 0. (4.22)

Using equation 4.22 into equation 2.27, we get

Di
jk = bjkB

i + b0kB
i
j + b0jB

i
k − b0mgimBjk

−Am
k Ci

jm −Am
j Ci

km +Am
s Cjkmgis (4.23)

+λs(Cm
skC

i
jm + Cm

sjC
i
km − Ci

msC
m
jk).

Using the equations 4.2, 4.4, 4.5 and 4.6 into equations 2.28 to 2.23, we get

Bk = (n+ 1)(2n+ 1)bk +
n+ 1

α
yk, B

i = bbi + byi (4.24)

Bij =
(n+ 1)

{
aijα

2 − yiyj + 2n(n+ 1)bibjα
}

2α3
(4.25)
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Bi
j = 0 (4.26)

Am
k = 0, λm = Bmb00. (4.27)

Using tensor contraction operation with equations 4.25 and 4.26 by yj , we get
Bi0 = 0, Bi

0 = 0. Further contracting equation 4.27 by yk and using the fact that
Bi

0 = 0, we get Am
0 = Bmb00. Contracting equation 4.23 by yk and using the

facts Bi0 = 0, Bi
0 = 0, Am

0 = Bmb00 and Cm
s0 = 0, Ci

0m = 0, Cm
j0 = 0 obtained

by contracting equations 4.25, 4.26, 4.27 and 3.6, we get

Di
j0 = Bibj0 +Bi

jb00 − b00B
mCi

jmi (4.28)

Di
00 = bbib00 + byib00. (4.29)

Multiplying equation 4.25 by bi and then using equations 4.2, 4.21 and 4.23, we
get

biD
i
j0 = bbj0 + bbjb00 − bbib

mCi
jmb00. (4.30)

Now multiplying equation 4.26 by bi and then using equation 4.2 we get

biD
i
00 =

b2

1 + n(n+ 1)
b00. (4.31)

From equations 4.14 and 4.16 it is clear that

bmbiC
i
jmBj

α =
b2

1 + n(n+ 1)
Mα = 0. (4.32)

Contracting the expression bi|j = bij − brD
r
ij by yi and yj respectively and then

using equation 4.31 we get

bi|jy
iyj = b00 − brD

r
00 =

b2

1 + n(n+ 1)
b00.

Put bi|j = bij − brD
r
ij in equations 4.17 and 4.18 and then using equa-

tions 4.27, 4.1 and 4.29 and the value of bi|jy
iyj above, equations 4.20 and 4.21

can be written as √
b2

1 + n(n+ 1)
bi0B

i
α + bHα = 0 (4.33)√

b2

1 + n(n+ 1)
b00 + bH0 = 0. (4.34)

From the equation 4.31 it is clear that the conditionH0 = 0 is equivalent to b00 =
0, where bij is independent of y

i. Since yi satisfy equation 4.2, the condition can
be written as bijy

iyj = (biy
i)(cjy

j) for some cj(x), so that we have

2bij = bicj + bjci. (4.35)

Thus we shown that a Finslerian hypersurface Mn−1 will be hyperplane of first
kind if and only if 2bij = bicj +bjci. Now we try to show that second fundamen-
tal tensor Hαβ of the hypersurface Mn−1 is proportional to its angular metric



894 Sonia Rani, Vinod Kumar, Mohammad Rafee

tensor hαβ . For that, contracting equation 4.35 and using the fact that biy
j = 0,

we get b00 = 0. This implies that the condition b00 = 0 and 2bij = bicj + bjci
are equivalent. Multiplying equation 4.35 by Bi

α and then Bj
β and using equa-

tions (4.1) and (4.2), we have bijB
i
αB

j
β = 0. Again, multiplying equation 4.35

by Bi
α and yj and then using Equation (4.1), we have bi0B

i
α = 0. Again, con-

sider equation 2bij = bicj + bjci. Multiplying by yj to both sides, contracting
by yj , multiplying by bi both sides and using the fact that b2 = bib

i, we get

bi0b
i = b2c0

2 . Now, using this in equation 4.30 gives Hα = 0. Again, using 4.23

and 4.24 and using b00 = 0 and bijB
i
αB

j
β = 0, we get λm = 0, Ai

jB
j
β = 0 and

BijB
i
αB

j
β = 1

2αhαβ . Thus using the equations 4.6, 4.7, 4.8, 4.12 and 4.20, we get

brD
r
ijB

i
αB

j
β = − c0b

2

1 + n(n+ 1)
hαβ . (4.36)

Thus using the relation bi|j = bij − brD
r
ij and equation 4.36, equation 4.19

reduces to

− c0b
2

1 + n(n+ 1)
hαβ +

√
b2

1 + n(n+ 1)
Hαβ = 0 (4.37)

Hαβ =
c0b√

1 + n(n+ 1)
hαβ .

□

Theorem 4.5. Let (M,F ) be a Finsler manifold, where F (α, β) = (α+β)n+1

αn , n ∈
N , is a generalized square metric and Mn−1 be its associated hypersurface.Then
the hypersurface Mn−1 will be hyperplane of second kind if and only if bij = ebibj.

Proof. We know from Lemma 3.5, hypersurface Mn−1 is a hyperplane of second
kind if Hα = 0 and Hαβ = 0. Now we consider these two sufficient conditions
one by one.

(1) If Hαβ = 0, then equation (4.37) becomes c0 = ciy
i = 0.

(2) Again, if Hα = 0, then Lemma 3.3 and Lemma 3.4 imply H0 = 0.
We have already shown above H0 = 0 is equivalent to 2bij = bicj + bjci.

Now we combine case 1 and case 2. For that, put the value of ci(x) = e(x)bi(x)
obtained in case 1 to equation obtained in case 2, we get bij = ebibj . Thus
we shown that the hypersurface Mn−1 of the Finsler manifold (M,F ) will be
hyperplane of second kind iff bij = ebibj . □

Theorem 4.6. Let (M,F ) be a Finsler manifold, where F (α, β) = (α+β)n+1

αn ,

n ∈ N , is a generalized square metric and Mn−1 be its associated hypersurface.
Then the hypersurface Mn−1 will not be hyperplane of third kind.
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Proof. We know from sufficient conditions of Lemma 3.6 a hypersurface becomes
a hyperplane of third kind if Hα = 0, Hαβ = 0 and Mαβ = 0. Now we consider
these three sufficient conditions one by one.

(1) If Hα = 0, then we get the condition 2bij = bie(x)bj(x) + bje(x)bi(x),
which has already been proved above and is termed as the condition of
hyperplane of first kind.

(2) If Hαβ = 0, then we get the condition bij = ebibj , which has already
been proved above and is termed as the condition of hyperplane of second
kind.

(3) Now put Mαβ = 0 in Equation (4.15), we get

0 =
(n+ 1)

2α

(√
b2

1 + n(n+ 1)

)
hαβ ,

which implies that no condition could be deduced to satisfy Mαβ =
0, i.e., it is impossible to find a condition under which a hypersurface
becomes a hyperplane of third kind, as term on the R.H.S. of the above
equation can never be zero. Finally, we shown that hypersurface Mn−1

is not a hyperplane of third kind.

□

Corollary 4.7. Let (M,F ) be a Finsler manifold, where F may be any of the

following Finsler metrics obtained by generalized square metric F = (α+β)n+1

αn ,
n = 1, 2, 3, ......

(1) F = (α+β)2

α (popularly known as square metric)

(2) F = (α+β)3

α2

(3) F = (α+β)4

α3 , etc..

Also let Mn−1 be the corresponding hypersurfaces of the given Finsler
manifold (M,F ). Then, in either case, show that the hypersurface is a
hyperplane of first kind, second kind and not of the third kind.

Proof. By Theorems 4.4, 4.5 and 4.6 it can be easily deduce that the hypersur-
faces Mn−1 corresponding to different Finsler manifolds (M,F ) are a hyperplane
of first kind, second kind and not of the third kind. It is remarkable that cor-
responding author has already been published a paper [12] on part (1) of this
corollary. □
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