
J. Appl. Math. & Informatics Vol. 42(2024), No. 4, pp. 739 - 748

https://doi.org/10.14317/jami.2024.739

DOMINATION IN BIPOLAR INTUITIONISTIC
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Abstract. The intention of this paper is to acquaint domination, total

domination on bipolar intuitionistic fuzzy graphs. Subsequently for bipolar

intuitionistic fuzzy graphs the domination number and the total domina-
tion number are defined. Consequently we proved necessary and sufficient

condition for a d-set to be minimal d-set, bounds for domination number

and equality conditions for domination number and order.
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1. Introduction

In graph theory one of the vital concepts is domination and its growth is
grand. Dominating sets in graph theory were introduced by Berge, Ore in 1962.
In 1977 Cockayne, Hedetniemi introduced a domination number and indepen-
dent domination number. In real time problems, eventhough the graphs are the
best mathematical models for representing the relations between the nodes and
their connections, the vagueness in the relationship cannot be expressed. After
a long time criticism on fuzzy set, the theory of fuzzy mathematics boomed a
research area in the last four decades. A. Somasundram and S. Somasundram
[6] defined domination in fuzzy graph using effective edges in 1988.
Even some real time problems need much more generalization of the fuzzy set-
theory. For that reason intuitionistic fuzzy sets, bipolar fuzzy sets and inter-
val valued fuzzy sets are introduced. Recently many researchers extended and
merged different fuzzy sets to apply for the real time applications. A few in that
list are interval valued intuitionistic fuzzy, neutrosophic sets, picture fuzzy sets
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and bipolar intuitionistic fuzzy set(BIFS).
The combination of intuitionistic fuzzy sets and graph theory is a new con-
cept named as intuitionistic fuzzy graph introduced by R. Parvathi and M. G.
Karunambigai [3]. The intuitionistic fuzzy graph can be used in a model where
membership and non-membership value are very important. The application
area of intuitionistic fuzzy graphs are chemistry, economics, computer sciences,
engineering, medicine, decision making problems etc. In 2010 R. Parvathi [4]
introduced the notion of domination in intuitionistic fuzzy graphs.
The combination of bipolar fuzzy sets and graph theory is a new concept named
as bipolar fuzzy graph introduced by Akram [1] in the year 2011. The bipo-
lar fuzzy graph can be used in a problem if there are two similar but opposite
type of qualitative variables like success and failure, safe and danger etc. The
application area of bipolar fuzzy graphs is medicine, management, environment,
computer, cognitive sciences, economics etc. M. G. Karunambigai [2] defined
the domination in bipolar fuzzy graph(BFG) in 2013. Several domination pa-
rameters for BFG are introduced by V. Mohanaselvi and S. Sivamani (see [5])
from 2014.
By combining bipolar and intuitionistic fuzzy sets, in 2019 Sonia Mandal and
Madhumanagal Pal [7] defined the bipolar intuitionistic fuzzy graph, best fits
for some real time applications. By the motivation of above works, we initiate
the domination in bipolar intuitionistic fuzzy graphs.

2. Preliminaries

Throughout this work a graph will represent a graph without loops.

Definition 2.1. A bipolar intuitionistic fuzzy graph is defined as G = (A,B)
where V is an underlying vertex set, A = (χ+

1 , χ
−
1 , η

+
1 , η

−
1 ) is a bipolar intu-

itionistic fuzzy set on V , B(χ+
2 , χ

−
2 , η

+
2 , η

−
2 ) is a bipolar intuitionistic fuzzy set

in E ⊆ V × V ∋ χ+
2 (α, β) ≤ (χ+

1 (α) ∧ χ+
1 (β)), χ

−
2 (α, β) ≥ (χ−

1 (α) ∨ χ−
1 (β)),

η+2 (α, β) ≤ (η+1 (α) ∨ η+1 (β)) and η−2 (α, β) ≥ (η−1 (α) ∧ η−1 (β)) ∀ (α, β) ∈ E.

The below definitions are initiated in this paper.

Definition 2.2. For a BIFG, G order is defined by

µ =
∑
α∈V

{
1 + χ+

1 (α) + χ−
1 (α) + η+1 (α) + η−1 (α)

2

}
.

For a BIFG, G size is defined by

λ =
∑

(α,β)∈E

{
1 + χ+

2 (α, β) + χ−
2 (α, β) + η+2 (α, β) + η−2 (α, β)

2

}
.

Definition 2.3. In a BIFG, G let W ⊆ V . The cardinality of W is defined by∑
α∈W

{
1 + χ+

1 (α) + χ−
1 (α) + η+1 (α) + η−1 (α)

2

}
.
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In a BIFG, G let F ⊆ E. The cardinality of F is defined by∑
(α,β)∈F

{
1 + χ+

2 (α, β) + χ−
2 (α, β) + η+2 (α, β) + η−2 (α, β)

2

}
.

In a BIFG, G let α ∈ V . The cardinality of α is defined by

|α| =
{
1 + χ+

1 (α) + χ−
1 (α) + η+1 (α) + η−1 (α)

2

}
.

In a BIFG, G let e = (α, β) ∈ E. The cardinality of e is defined by

|e| =
{
1 + χ+

2 (α, β) + χ−
2 (α, β) + η+2 (α, β) + η−2 (α, β)

2

}
.

Example 2.1.

Figure 1

For the BIFG in figure ??

Order=µ = 1+0.4−0.5+0.5−0.3
2 + 1+0.5−0.4+0.3−0.4

2 + 1+0.3−0.2+0.7−0.5
2 = 1.7

Size=λ = 1+0.3−0.4+0.4−0.3
2 + 1+0.3−0.2+0.6−0.4

2 + 1+0.2−0.1+0.6−0.5
2 = 1.75

Let W = {a, b}, then |W | = 1+0.4−0.5+0.5−0.3
2 + 1+0.5−0.4+0.3−0.4

2 = 1.05

Let F = {ab, ac}, then |F | = 1+0.3−0.4+0.4−0.3
2 + 1+0.3−0.2+0.6−0.4

2 = 1.15

Let α = a, then |α| = 1+0.4−0.5+0.5−0.3
2 = 0.55

Let e = bc, then |e| = 1+0.2−0.1+0.6−0.5
2 = 0.6
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Definition 2.4. In BIFG, G for an edge e = (α, β), if χ+
2 (α, β) = (χ+

1 (α) ∧
χ+
1 (β)), χ

−
2 (α, β) = (χ−

1 (α)∨χ
−
1 (β)), η

+
2 (α, β) = (η+1 (α)∨η

+
1 (β)) and η−2 (α, β) =

(η−1 (α) ∧ η−1 (β)), for all α, β ∈ V , then e = (α, β) is called an effective edge.

Definition 2.5. Let α ∈ V, e ∈ E in G. A neighborhood of α is defined as
N(α) = {β : β ∈ V & (α, β) is an effective edge in G} and
N(e) = {All effective edges adjacent to e}.

Definition 2.6. Let α ∈ V . It is called an isolated vertex if χ+
2 (α, β) = 0,

χ−
2 (α, β) = 0, η+2 (α, β) = 0, and η−2 (α, β) = 0.

Definition 2.7. Let A = {α ∈ V such that (α, β) is an effective edge}. The
neighborhood degree on α ∈ V is defined by

D1(α) =
∑

α∈N(α)

{
1 + χ+

1 (α) + χ−
1 (α) + η+1 (α) + η−1 (α)

2

}
.

The effective degree on α ∈ V is

D2(α) =
∑

(α,β)∈A

{
1 + χ+

2 (α, β) + χ−
2 (α, β) + η+2 (α, β) + η−2 (α, β)

2

}
.

The least D1(α) of G is δ1 = ∧{D1(α)|α ∈ V }, the greatest D2(α) of G is
∆1 = ∨{D1(α)|α ∈ V }, the least effective degree on G is δ2 = ∧{D2(α)|α ∈ V },
the greatest effective degree on G is ∆2 = ∨{D2(α)|α ∈ V }.

Example 2.2.

Figure 2

Here

• The edges ab, dc are effective edges
• N(a) = {b}, N(b) = {a, c}, N(c) = {b, d}, N(d) = {c}. Then D1(a) =
0.5, D1(b) = 1.4, D1(c) = 0.9, D1(d) = 0.5 with δ1 = 0.5 and ∆1 = 1.4
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• N(ab) = {bc}, N(bc) = {ab, cd}, N(cd) = {bc}. ThenD2(ab) = 0.4, D2(bc)
= 1.1, D2(cd) = 0.4 with δ2 = 0.4 and ∆2 = 1.1.

• The vertex e is an isolated vertex.

Definition 2.8. A BIFG, G is said to be complete if ∀α, β ∈ V , χ+
2 (α, β) =

(χ+
1 (α)∧χ+

1 (β)), χ
−
2 (α, β) = (χ−

1 (α)∨χ−
1 (β)), η

+
2 (α, β) = (η+1 (α)∨ η+1 (β)) and

η−2 (α, β) = (η−1 (α) ∧ η−1 (β)).

Example 2.3.

Figure 3

Since all the edges are effective edges G is complete.

Definition 2.9. In a BIFG, G consider α, β ∈ V . If there exists an effective
edge between α, β ∈ G then α is dominating β. A vertex set D ⊆ V is said to
be a dominating set (d-set) in G if ∀α ∈ V \D there exists β ∈ D such that α
dominates β.

Definition 2.10. If D is a d-set of G, any D1 ⊆ D is not a d-set of G then D
is called minimal d-set. The least cardinality minimal d-set is called domination
number, denoted by γ.

Example 2.4. In Figure 3.4 the dominating set is D = {v3, v5}. Because every
edge in D dominates an element in V \D = {v1, v2, v4}. Now by the definition of

domination number, γ =

[
1 + 0.2− 0.4 + 0.3− 0.5

2
+

1 + 0.6− 0.6 + 0.3− 0.3

2

]
= 0.8.

Definition 2.11. The complement of a BIFG, G = (V,E) is a BIFG, G =
(V ,E), where

(1) V = V

(2) For all α ∈ V, χ+
1 (α) = χ+

1 (α), χ
−
1 (α) = χ−

1 (α), η
+
1 (α) = η+1 (α), and

η−1 (α) = η−1 (α)
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Figure 4

(3) For all e = (α, β) ∈ E,

χ+
2 (α, β) = (χ+

1 (α)∧ χ+
1 (β))− χ+

2 (α, β), χ
−
2 (α, β) = (χ−

1 (α)∨ χ−
1 (β))−

χ−
2 (α, β), η

+
2 (α, β) = η+2 (α, β)−(η+1 (α)∨η

+
1 (β)) and η−2 (α, β) = η−2 (α, β)−

(η−1 (α) ∧ η−1 (β)).

Figure 5

The above graph is the complement of BIFG in Figure ??.

Remark. Assume G be a BIFG.

(1) Domination in G is symmetric on V .
(2) N(α) = {β ∈ V } such that α, β are dominating each other.
(3) If no effective edges are in G, then clearly V is the only d-set in G and

γ = p.
(4) If N(α) = ϕ, then α ∈ V is contained in every d-set of G.
(5) If G is complete BIFG, then γ = ∧{|α|, α ∈ V } and D = {α}.
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3. Main Results

Theorem 3.1. In a BIFG, G a d-set D is a minimal d-set if and only if ∀ α ∈ D
at least one of the below constraints hold.

(1) D ∩N(α) = ϕ
(2) ∃ β ∈ V −D for which D ∩N(β) = {α}.

Proof. If a minimal d-set of G is D and α ∈ D, then D − {α} will not be a
d-set of G. So ∃ β ∈ V − (D − {α}) such that it is dominated by no element in
D− {α}. If α = β, then N(α)∪D = ϕ. Otherwise β is dominated by D not by
D−{α}. Then β is the single vertex adjacent to α in D. Hence D∩N(β) = {α}.
The converse is evident.

The above constraints (1) and (2) are necessary for a minimal d−set. In
example 2.2, the d−set is {a, c, d, e}. Let α = d, then N(d) = {c} with D ∪
N(α) ̸= ϕ. Hence {a, c, d, e} is not a minimal d− set.

Theorem 3.2. Assume that G is a BIFG without isolated vertices. Then for
all minimal d-set D, V \D is also a d-set.

Proof. Assume that D is a minimal d-set and α ∈ D. As no isolated vertex
is in G, ∃ vertex β ∈ N(α). Hence by Theorem 3.1, it results that α ∈ V −D.
Hence ∀ v ∈ D, an element in V \D dominates D. Hence V \D is a d-set.

In this theorem, our assumption is necessary. In example 2.2 the d− set is
{a, d, e}, then V \D = {b, c} is not a d− set. Here, G is a BIFG with isolated
vertex.

Theorem 3.3. Assume a domination number, an order for G respectively γ, µ
and a domination number, an order for G respectively γ′, µ′. Then for each G,
γ + γ′ ≤ µ+ µ′. If no effective edges are in G then equality holds.

Proof. The inequality immediately follows. The domination number γ = µ
if and only if χ+

2 (α, β) < (χ+
1 (α) ∧ χ+

1 (β)), χ−
2 (α, β) > (χ−

1 (α) ∨ χ−
1 (β)),

η+2 (α, β) < (η+1 (α) ∨ η+1 (β)) and η−2 (α, β) < (η−1 (α) ∧ η−1 (β)), ∀ α, β ∈ V .
Also, γ′ = µ′ if and only if (χ+

1 (α) ∧ χ+
1 (β)) − χ+

2 (α, β) < (χ+
1 (α) ∧ χ+

1 (β)),
(χ−

1 (α) ∨ χ−
1 (β))− χ−

2 (α, β) > (χ−
1 (α) ∨ χ−

1 (β)), (η
+
1 (α) ∨ η+1 (β))− η+2 (α, β) <

(η+1 (α)∨η
+
1 (β)), and (η+1 −(α)∧η−1 (β))−η−2 (α, β) > (η−1 (α)∧η

−
1 (β)), ∀ α, β ∈ V .

Hence, 0 < χ+
2 (α, β), 0 < η+2 (α, β), χ

−
2 (α, β) < 0, η−2 (α, β) < 0. Combining

these, the proof is complete.

Corollary.

(1) If no isolated vertices are in G it is true that γ ≤ µ

2
.

(2) If no isolated vertices are inG andG then γ+γ′ if and only if γ = γ′ =
µ

2
.

Theorem 3.4. For any BIFG, G it is true that γ ≤ p−∆1.
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Proof. Let a neighborhood degree α ∈ D is ∆1, V \N(α) is a d-set on G. Hence,
γ ≤ |V −N(α)| = µ−∆1.

Theorem 3.5. For any BIFG, G γ = µ and only if α ∈ V on G has a different
neighbor.

Proof. If in G neighbor of each vertex is different, then clearly D has a different
td-set on G. Hence, γ = µ. On the contrary, assume that γ = µ. Suppose for α
there are two neighbor β1 and β2, clearly V − {α} is td−set on G. Thus γ = µ
contradict to our assumption. Hence each vertex on G has a different neighbors.

Theorem 3.6. If γ = µ then the number of elements in the vertex set in BIFG,
G is a multiple of two.

Proof. Assume G be a BIFG and has 2n+1 number of vertices. Since G has
no loops, for each vertex v1 there exists a unique neighboring vertex v2 distinct
from v1. Thus there is an n number of distinct pairs of vertices such that in each
pair one vertex is neighbor of the other vertex. Finally there is a single vertex
which does not have a unique neighbor. This leads to a contradiction. Thus G
must have an even number of vertices.

4. Conclusion

In the vital concepts list in fuzzy graph theory, domination is in top and its
growth is spectacular. Here domination, total domination and independent sets
are introduced. Some of the findings are also presented.

Future Work. Studies of various other dominations in BIFG will be focused
in future.
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