DOI QR코드

DOI QR Code

Influencing of drying-wetting cycles on mechanical behaviors of silty clay with different initial moisture content

  • Shi-lin Luo (School of Civil Engineering, Changsha University) ;
  • Da Huang (College of Civil Engineering and Geomatics, Chang'an University) ;
  • Jian-bing Peng (College of Civil Engineering and Geomatics, Chang'an University) ;
  • Fei Liu (School of Civil and Transportation Engineering, Henan University of Urban Construction) ;
  • Xiao-ran Gao (College of Civil Engineering and Geomatics, Chang'an University) ;
  • Roberto Tomas (Dpto. de Ingenieria Civil. Escuela Politecnica Superior de Alicante. Universidad de Alicante)
  • 투고 : 2024.02.18
  • 심사 : 2024.07.29
  • 발행 : 2024.08.10

초록

To get a better understanding of the effect of drying-wetting cycles (DWC) on the mechanical behaviors of silty clay hiving different initial moisture content (IMC), the direct shear tests were performed on sliding band soil taken from a reservoirinduced landslide at the Three Gorges Reservoir area. The results indicated that, as the increasing number of DWC, the shear stress-displacement curves type changed from strain-hardening to strain-softening, and both the soil peak strengths and strength parameters reduced first and then nearly remain unchanged after a certain number of DWC. The effects of DWC on the cohesion were predominated that on the internal friction angle. The IMC of 17% is regarding as the critical moisture content, and the evolution laws of both peak shear strength and strength parameters presented a reversed 'U' type with the rising of the IMC. Based on it, a strength deterioration evolution model incorporating the influence of IMC and DWC was developed to describe the total degradation degree and degradation rate of strength parameters, and the degradation of strength parameters caused by DWC could be counterbalanced to some extent as the soil IMC close to critical moisture content. The microscopic mechanism for the soil strength caused by the IMC and DWC were discussed separately. The research results are of great significance for further understanding the water-weakening mechanicals of the silty clay subjected to the water absorption/desorption.

키워드

과제정보

This work is supported by the National Natural Science Foundation of China (42277187), United Key Program of National Natural Sciences Foundation of China (U23A202579), Changsha Municipal Natural Science Foundation (kq2202065) and Open Research Fund Program of Hunan Provincial Key Laboratory for Big Data Smart Application of Natural Disaster Risks Survey of Highway Engineering. The author Roberto Tomas is supported by the Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital within the framework of the project CIAICO/2021/335.

참고문헌

  1. ASTM (2010), "Standard practice for classification of soils for engineering purposes (USCS). Annual book of ASTM standards, vol. 8.04.Designation D 2487-10. American Society for Testing Materials, West Conshohocken", https://doi.org/10.1520/D2487-17.
  2. Cao, L. and Luo, X. (2007), "Experimental study of dry-wet circulation of Qianjiangping Landslide's unsaturated soil", Chinese J. Rock Soil Mech., 28, 93-97. https://doi.org/10.16285/j.rsm.2007.s1.090.
  3. Castellanza, R., Gerolymatou, E. and Nova, R. (2008), "An attempt to predict the failure time of abandoned mine pillars", Rock Mech. Rock Eng., 41, 377-401. https://doi.org/10.1007/s00603-007-0142-y.
  4. Chao, Z., Shi, D. and Fowmes, G. (2023), "Mechanical behaviour of soil under drying-wetting cycles and vertical confining pressures", Environ. Geotech., 10, 1-11. https://doi.org/10.1680/jenge.22.00048.
  5. Chen, G., Chen, S., Su, T., Zhang, J. and Deng, C. (2016a), "Soil shear strength test and failure process analysis under different moisture content", Chinese J. People's Pearl River, 37(12), 37-41.
  6. Chen, J., Liu, J., Wang, Q., Han, Y. and Wang, J. (2021), "Microscopic interpretation of water content influence on shear strength of dipersive soil", Chinese J. Jinlin Univ. (Earth Science Edition), 51(3), 792-803. https://doi.org/10.13278/j.cnki.jjuese.2020.0318.
  7. Chen, J., Tong, H., Yuan, J., Fang, Y. and Huang, X. (2023), "Energy multi-scale method to analyze the scale effect of soil particles", Front. Mater., 10. https://doi.org/10.3389/fmats.2023.1137758.
  8. Chen, X.P.., Zhu, H.H., Huang, J.W. and Liu, D. (2016b), "Stability analysis of an ancient landslide considering shear strength reduction behavior of slip zone soil", Landslides, 13, 173-181. https://doi.org/10.1007/s10346-015-0629-7.
  9. Cheng, P., Liu, F., Chen. X., Zhang, Y. and Yao, K.( 2024), "Estimation of the installation torque-capacity correlation of helical pile considering spatially variable clays", Can. Geotech. J., https://doi.org/10.1139/cgj-2023-0331.
  10. Cheng, Q., Tang, C.S., Xu, D., Zeng, H. and Shi, B. (2021), "Water infiltration in a cracked soil considering effect of dryingwetting cycles", J. Hydrology, 593, 125640. https://doi.org/10.1016/j.jhydrol.2020.125640.
  11. Fazeli, A., Habibagahi, G. and Ghahramani, A. (2009), "Shear strength characteristics of Shiraz unsaturated silty clay", Iranian J. Sci. Technol., 33(4), 327. https://doi.org/10.22099/IJSTC.2009.710.
  12. Fredlund, D. and Rahardjo, H. (1993), Soil mechanics for unsaturated soils, Wiley, New York. https://doi.org/10.2136/vzj2005.0002br.
  13. Gens, A., Sanchez, M. and Sheng, D. (2006), "On constitutive modelling of unsaturated soils", Acta Geotechnica, 1, 137-147. https://doi.org/10.1007/s11440-006-0013-9.
  14. Goh, S., Rahardjo, H. and Leong, E. (2014), "Shear strength of unsaturated soils under multiple drying-wetting cycles", J. Geotech. Geoenviron. Eng., 140(2), 06013001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001032.
  15. Gu, D., Liu, H., Gao, X., Huang, D. and Zhang, W. (2021), "Influence of cyclic wetting-drying on the shear strength of limestone with a soft interlayer", Rock Mech. Rock Eng., 54(8), 4369-4378. https://doi.org/10.1007/s00603-021-02502-2.
  16. Guan, G.S., Rahardjo, H. and Choon, L.E. (2010), "Shear strength equations for unsaturated soil under drying and wetting", J. Geotech. Geoenviron. Eng., 136(4), 594-606. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000261.
  17. Gupta, V., Bhasin, R.K., Kaynia, A.M., Kumar, V., Saini, A., Tandon, R. and Pabst, T. (2016), "Finite element analysis of failed slope by shear strength reduction technique: a case study for Surabhi Resort Landslide, Mussoorie township, Garhwal Himalaya", Geomatics, Natural Hazard. Risk, 7(5), 1677-1690. https://doi.org/10.1080/19475705.2015.1102778.
  18. Hu, C., Yuan, Y., Wang, X. and Zheng1, M.Y.L. (2018), "Experimental study on strength deterioration model of compacted loess under wetting-drying cycles", Chinese J. Rock Mech. Eng., 37(12), 2804-2818. https://doi.org/10.13722/j.cnki.jrme.2018.0770.
  19. Lacerda, W.A. (2007), "Landslide initiation in saprolite and colluvium in southern Brazil: Field and laboratory observations", Geomorphology, 87(3), 104-119. https://doi.org/10.1016/j.geomorph.2006.03.037
  20. Lemaitre, J. (1984), "How to use damage mechanics", Nuclear Eng. Design, 80(2), 233-245. https://doi.org/10.1016/0029-5493(84)90169-9.
  21. Liu, F., Cheng, P., Luo, Y.J., Yi, J.T., Chen, X.J., Peng, Y. and Chu, Y.P. (2024), "Large-deformation study of T-bar penetration in spatially variable sedmiments", Appl. Ocean Res., 150, 104105. https://doi.org/10.1016/j.apor.2024.104105.
  22. Liu, W., Tang, X., Yang, Q. and Li, W. (2015), "Influence of drying/wetting cycles on the mechanical cyclic behaviours of silty clay", Eur. J. Environ. Civil Eng., 19(7), 867-883. https://doi.org/10.1080/19648189.2014.974833.
  23. Lu, H., Zeng, Z., Zhao, Y., Ge R., Chen C. and Changfu, W. (2013), "Function fitting on strength attenuation curve of swell-shrinking soils", Chinese J. Geotech. Eng., 35(2), 157-162. https://doi.org/10.13278/j.cnki.ge.2013.0352.
  24. Lu, T., Wang, Y., Zhu, H., Wei, X. and Shao, M. (2020), "Dryingwetting cycles consistently increase net nitrogen mineralization in 25 agricultural soils across intensity and number of drying-wetting cycles", Science of The Total Environ., 710, 135574. https://doi.org/10.1016/j.scitotenv.2019.135574.
  25. Mehrjardi, G.T., Behrad, R. and Tafreshi, S N.M. (2019), "Scale effect on the behavior of geocell-reinforced soil", Geotext. Geomembranes, 47(2), 154-163. https://doi.org/10.1016/j.geotexmem.2018.12.003.
  26. Mei, Y., Hu, C. M., Yuan, Y. L., Wang, X. Y., and Zhao, N. (2016), "Experimental study on deformation and strength property of compacted loess", Geomech. Eng., 11(1), 161-175. https://doi.org/10.12989/gae.2016.11.1.161.
  27. Miao, F., Zhao, F., Wu, Y., Li, L., Xue, Y. and Meng, J. (2022), "A novel seepage device and ring-shear test on slip zone soils of landslide in the Three Gorges Reservoir area", Eng. Geol., 307, 106779. https://doi.org/10.1016/j.enggeo.2022.106779
  28. Nishimura, T. and Fredlund, D. (2002), "Hysteresis effects resulting from drying and wetting under relatively dry conditions", Proceedings of the 3rd international conference on unsaturated soils, UNSAT 2002. Swets & Zeitlinger, Lissie.
  29. Niu, L., Hu, X., Xu, C., Wang, J., Li, Y. and Zhang, H. (2023), "Physical model test of the deformation mechanism of the multi-sliding zones landslide subjected to the operated reservoir", Bull. Eng. Geol. Environ., 82(6), 213. https://doi.org/10.1007/s10064-023-03233-0.
  30. Nowamooz, H. and Masrouri, F. (2010), "Influence of suction cycles on the soil fabric of compacted swelling soil", Comptes rendus - Geoscience, 342(12), 901-910. https://doi.org/10.1016/j.crte.2010.10.003.
  31. Pei, P., Zhao, Y., Ni, P., and Mei, G. (2020), "A protective measure for expansive soil slopes based on moisture content control", Eng. Geol., 269, 105527. https://doi.org/10.1016/j.enggeo.2020.105527
  32. Pineda, J.A., Romero, E., Gracia, M.D. and Sheng, D. (2014), "Shear strength degradation in claystones due to environmental effects", Geotechnique, 64(6), 493-501. https://doi.org/10.1680/geot.13.T.025.
  33. Rahnenma, A., Habibagahi, G. and Ghahramani, A. (2003), "A new simple shear apparatus for testing unsaturated soils", Iranian J. Sci. Technol., 27(1), 73-80. https://doi.org/10.1080/19475705.2015.1102778.
  34. Risnes, R., Madland, M.V., Hole, M. and Kwabiah, N.K. (2005), "Water weakening of chalk-Mechanical effects of water-glycol mixtures", J. Petroleum Sci. Eng., 48(1-2), 21-36. https://doi.org/10.1016/j.petrol.2005.04.004.
  35. Song, B., Chen, W., Wu, W. and Jiang, Y. (2012), "Study on a large shear test of soil with different moisture content in the sliding zone of Suoertou landslide", Chinese J. Rock Soil Mech., 33(2), 77-84. https://doi.org/10.13278/j.cnki.rsm.2012.0332.
  36. Stoorvogel, J.J., Mulder, V.L. and Hendriks, C.M.J. (2019), "The effect of disaggregating soil data for estimating soil hydrological parameters at different scales", Geoderma, 347, 185-193. https://doi.org/10.1016/j.geoderma.2019.04.002.
  37. Thyagaraj, T. and Salini, U. (2015), "Effect of pore fluid osmotic suction on matric and total suctions of compacted clay", Geotechnique, 65(11), 952-960. https://doi.org/10.1680/jgeot.14.P.210.
  38. Tohari, A., Nishigaki, M. and Komatsu, M. (2007), "Laboratory Rainfall-Induced Slope Failure with Moisture Content Measurement", J. Geotech. Geoenviron. Eng., 133(5), 575-587. https://doi.org/10.1061/(ASCE)1090-0241.
  39. Tse, E. and Ng, C. (2008), "Effects of drying and wetting cycles on unsaturated shear strength", Proceedings of the 1st European conference on unsaturated soils, CRC Press, Leiden. https://hdl.handle.net/1783.1/37938.
  40. Wang, Y., Tang, H., Huang, J., Wen, T., Ma, J. and Zhang, J. (2022), "A comparative study of different machine learning methods for reservoir landslide displacement prediction", Eng. Geol., 298, 106544. https://doi.org/10.1016/j.enggeo.2022.106544.
  41. Wang, Z.L., Li, Y.C. and Wang, J.G. (2007), "A damage-softening statistical constitutive model considering rock residual strength", Comput. Geosci., https://doi.org/10.1016/j.cageo.2006.02.011.
  42. Wheeler, S., Sharma, R. and Buisson, M. (2003), "Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils", Geotechnique, 53(1), 41-54. https://doi.org/10.1680/geot.2003.53.1.41.
  43. Yan, J., Zou, Z., Mu, R., Hu, X., Zhang, J., Zhang, W., Su, A., Wang, J. and Luo, T. (2022), "Evaluating the stability of Outang landslide in the Three Gorges Reservoir area considering the mechanical behavior with large deformation of the slip zone", Nat. Hazards, 112(3), 2523-2547. https://doi.org/10.1007/s11069-022-05276-0.
  44. Zeng, Z., Pan, B., Wu, Y., Zhang, B. and Liang, Z. (2022), "Influence mechanism of bound water on shear strength characteristics of lateritic clay", Chinese J. Undergr. Sp. Eng., 15(5), 1565-1579. https://doi.org/10.13278/j.cnki.usae.2022.0152.
  45. Zhang, C., Yin, Y., Yan, H., Zhu, S., Li, B., Hou, X. and Yang, Y. (2023), "Centrifuge modeling of multi-row stabilizing piles reinforced reservoir landslide with different row spacings", Landslides, 20(3), 559-577. https://doi.org/10.1007/s10346-022-01994-5.
  46. Zhang, P., Tang, L., Jiang, L. and Deng, Z. (2013), "Study on the quantitative relationship between matrix suction, moisture content, and dry density", Chinese J. Rock Mech. Eng., 32(1), 2792-2797. https://doi.org/10.13278/j.cnki.rme.2013.0321.
  47. Zhang, W., Ma, J., and Tang, L. (2019), "Experimental study on shear strength characteristics of sulfate saline soil in Ningxia region under long-term freeze-thaw cycles", Cold Reg. Sci. Technol., 160, 48-57. https://doi.org/10.1016/j.coldregions.2019.01.008.
  48. Zhu, R., Xie, W., Liu, Q., Yang, H. and Wang, Q. (2022), "Shear behavior of sliding zone soil of loess landslides via ring shear tests in the South Jingyang Plateau", Bull. Eng. Geol. Environ., 81(6), 244. https://doi.org/10.1007/s10064-022-02719-7
  49. Zou, Z., Luo, T., Zhang, S., Duan, H., Li, S., Wang, J., Deng, Y., and Wang, J.(2023), "A novel method to evaluate the timedependent stability of reservoir landslides: exemplified by Outang landslide in the Three Gorges Reservoir", Landslides, 1-16. https://doi.org/10.1007/s10346-023-02056-0.