DOI QR코드

DOI QR Code

An investigation into the effects of lime-stabilization on soil-geosynthetic interface behavior

  • 투고 : 2023.05.09
  • 심사 : 2024.07.15
  • 발행 : 2024.08.10

초록

The use of lime stabilization and geosynthetic reinforcement is a common approach to improve the performance of fine-grained soils in geotechnical applications. However, the impact of this combination on the soil-geosynthetic interaction remains unclear. This study addresses this gap by evaluating the interface efficiency and soil-geosynthetic interaction parameters of lime-stabilized clay (2%, 4%, 6%, and 8% lime content) reinforced with geotextile or geogrid using direct shear tests at various curing times (1, 7, 14, and 28 days). Additionally, machine learning algorithms (Support Vector Machine and Artificial Neural Network) were employed to predict soil shear strength. Findings revealed that lime stabilization significantly increased soil shear strength and interaction parameters, particularly at the optimal lime content (4%). Notably, stabilization improved the performance of soil-geogrid interfaces but had an adverse effect on soil-geotextile interfaces. Furthermore, machine learning algorithms effectively predicted soil shear strength, with sensitivity analysis highlighting lime percentage and geosynthetic type as the most significant influencing factors.

키워드

참고문헌

  1. Abdi, M.R., Ghalandarzadeh, A. and Shafiei Chafi, L. (2021), "An investigation into the effects of lime on compressive and shear strength characteristics of fiber-reinforced clays", J. Rock Mech. Geotech. Eng., 13(4), 885-898. https://doi.org/10.1016/j.jrmge.2020.11.008.
  2. Abu-Farsakh, M., Coronel, J. and Tao, M. (2007), "Effect of soil moisture content and dry density on cohesive soil-geosynthetic interactions using large direct shear tests", J. Mater. civil Eng., 19(7), 540-549. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(540).
  3. Al-Mukhtar, M., Khattab, S. and Alcover, J.F. (2012), "Microstructure and geotechnical properties of lime-treated expansive clayey soil", Eng. Geol., 139, 17-27. https://doi.org/10.1016/j.enggeo.2012.04.004.
  4. Al-Mukhtar, M., Lasledj, A. and Alcover, J.F. (2010), "Behaviour and mineralogy changes in lime-treated expansive soil at 20 C", Appl. Clay Sci., 50(2), 191-198. https://doi.org/10.1016/j.clay.2010.07.023.
  5. Al-Swaidani, A., Hammoud, I. and Meziab, A. (2016), "Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil", J. Rock Mech. Geotech. Eng., 8(5), 714-725. https://doi.org/10.1016/j.jrmge.2016.04.002.
  6. Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.
  7. Arulrajah, A., Rahman, M.A., Piratheepan, J., Bo, M.W. and Imteaz, M.A. (2014), "Evaluation of Interface Shear Strength Properties of Geogrid-Reinforced Construction and Demolition Materials Using a Modified Large-Scale Direct Shear Testing Apparatus", J. Mater. Civil Eng., 26(5), 974-982. https://doi.org/10.1061/(asce)mt.1943-5533.0000897.
  8. ASTM D- 3080. (2003), Standard test method for direct shear test of soils under consolidated drained conditions, Annual book of ASTM standards; 4(8) United States.
  9. ASTM D- 5321. (2014), Standard test method for determining the shear strength of soil-geosynthetic and geosynthetic-geosynthetic interfaces by direct shear, United States.
  10. Basudhar, P.K. (2010), "Modeling of soil-woven geotextile interface behavior from direct shear test results", Geotext. Geomembranes, 28(4), 403-408. https://doi.org/10.1016/j.geotexmem.2009.12.005.
  11. Behnood, A. (2018), "Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques", Transport. Geotech., 17, 14-32. https://doi.org/10.1016/j.trgeo.2018.08.002.
  12. Bell, F. (1996), "Lime stabilization of clay minerals and soils", Eng. Geol., 42(4), 223-237. https://doi.org/10.1016/0013-7952(96)00028-2.
  13. Bergado, D., Chai, J., Abiera, H., Alfaro, M. and Balasubramaniam, A. (1993), "Interaction between cohesive-frictional soil and various grid reinforcements", Geotext. Geomembranes, 12(4), 327-349. https://doi.org/10.1016/0266-1144(93)90008-C.
  14. Bishop, A.W. (1971), "Shear strength parameters for undisturbed and remolded soil specimens", Roscoe Memorial Symposium, Cambridge.
  15. Bozbey, I., Kelesoglu, M.K., Demir, B., Komut, M., Comez, S., Ozturk, T., Mert, A., Ocal, K. and Oztoprak, S. (2018), "Effects of soil pulverization level on resilient modulus and freeze and thaw resistance of a lime stabilized clay", Cold Reg. Sci. Technol., 151, 323-334. https://doi.org/10.1016/j.coldregions.2018.03.023.
  16. Brownlee, J. (2016), Machine learning mastery with Python: understand your data, create accurate models, and work projects end-to-end, Machine Learning Mastery.
  17. Cai, Y., Shi, B., Ng, C.W. and Tang, C.S. (2006), "Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil", Eng. Geol., 87(3), 230-240. https://doi.org/10.1016/j.enggeo.2006.07.007.
  18. Chai, J.C., Saito, A. and Hino, T. (2024), "Effect of Surface Roughness on Soil-Geogrid/Geotextile Interface Shear Strengths", Int. J. Geosynth. Ground Eng., 10. https://doi.org/10.1007/s40891-024-00558-y.
  19. Choudhary, A.K. and Krishna, A.M. (2016), "Experimental Investigation of Interface Behaviour of Different Types of Granular Soil/Geosynthetics", Int. J. Geosynth. Ground Eng., 2(1), 1-11. https://doi.org/10.1007/s40891-016-0044-8.
  20. Cowell, M. (1993), "Comparison of pull-out performance of geogrids and geotextiles", Proceedings of Geosynthetics, Roseville.
  21. Dash, S.K. and Hussain, M. (2012), "Lime stabilization of soils: reappraisal", J. Mater. Civil Eng., 24(6), 707-714.  https://doi.org/10.1061/(ASCE)MT.1943-5533.0000431
  22. Dinarvand, R. and Ardakani, A. (2022), "Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling", Geomech. Eng., 28(5), 505-520. https://doi.org/10.12989/gae.2022.28.5.505.
  23. Gandomi, A.H., Yun, G.J. and Alavi, A.H. (2013), "An evolutionary approach for modeling of shear strength of RC deep beams", Mater. Struct., 46, 2109-2119. https://doi.org/10.1617/s11527-013-0039-z.
  24. Ghanizadeh, A.R., Heidarabadizadeh, N., Bayat, M. and Khalifeh, V. (2022), "Modeling of unconfined compressive strength and Young's modulus of lime and cement stabilized clayey subgrade soil using Evolutionary Polynomial Regression (EPR)", Int. J. Min. Geo-Eng., https://doi.org/10.22059/IJMGE.2022.306688.594858.
  25. Guney, Y., Sari, D., Cetin, M. and Tuncan, M. (2007), "Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil", Build. Environ., 42(2), 681-688. https://doi.org/10.1016/j.buildenv.2005.10.035.
  26. Hebeler, G.L., Martinez, A. and Frost, J.D. (2016), "Shear zone evolution of granular soils in contact with conventional and textured CPT friction sleeves", KSCE J. Civil Eng., 20(4), 1267-1282. https://doi.org/10.1007/s12205-015-0767-6.
  27. Jahandari, S., Saberian, M., Zivari, F., Li, J., Ghasemi, M. and Vali, R. (2019), "Experimental study of the effects of curing time on geotechnical properties of stabilized clay with lime and geogrid", Int. J. Geotech. Eng., 13(2), 172-183. https://doi.org/10.1080/19386362.2017.1329259.
  28. Jalal, F.E., Xu, Y., Iqbal, M., Javed, M.F. and Jamhiri, B. (2021), "Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP", J. Environ. Management, 289, 112420. https://doi.org/10.1016/j.jenvman.2021.112420.
  29. Kanungo, D.P., Sharma, S. and Pain, A. (2014), "Artificial neural network (ANN) and regression tree (CART) applications for the indirect estimation of unsaturated soil shear strength parameters", Front. Earth Sci., 8(3), 439-456. https://doi.org/10.1007/s11707-014-0416-0.
  30. Khunt, S., Kantesaria, N., and Sachan, A. (2020), "Interface shear strength behaviour of marginal soils with geotextiles and geogrids", Proceedings of the Geo-Congress 2020, February.
  31. Kumar, A., Walia, B.S. and Abjaj, A. (2007), "Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil", J. Mater. Civil Eng., 19(3), 242-248. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(242)
  32. Lin, P., Chen, X., Jiang, M., Song, X., Xu, M. and Huang, S. (2022), "Mapping shear strength and compressibility of soft soils with artificial neural networks", Eng. Geol., 300, 106585. https://doi.org/10.1016/j.enggeo.2022.106585.
  33. Liu, C.N., Ho, Y.H. and Huang, J.W. (2009), "Large scale direct shear tests of soil/PET-yarn geogrid interfaces", Geotext. Geomembranes, 27(1), 19-30. https://doi.org/10.1016/j.geotexmem.2008.03.002.
  34. Lopes, M.L. (2002), Soil-Geosynthetic Interaction, Geosynthetics and Their Applications. Thomas Telford Publishing.
  35. Marienfeld, M.L. (2013), "Geosynthetics and common sense give you design options", Airfield and Highway Pavement, Los Angeles, June.
  36. Okonta, F.N. and Nxumalo, S.P. (2022), "Strength properties of lime stabilized and fibre reinforced residual soil", Geomech. Eng., 28(1), 35-48. https://doi.org/10.12989/gae.2022.28.1.035.
  37. Pham, B.T., Son, L.H., Hoang, T.A., Nguyen, D.M. and Tien Bui, D. (2018), "Prediction of shear strength of soft soil using machine learning methods", CATENA, 166, 181-191. https://doi.org/10.1016/j.catena.2018.04.004.
  38. Porbaha, A. (1996), "Geotextile reinforced lime treated cohesive soil retaining walls", Geosynth. Int., 3(3), 393-405. https://doi.org/10.1680/gein.3.0068.
  39. Pramanik, R., Mukherjee, S. and Sivakumar Babu, G. (2022), "Probabilistic assessment of geosynthetic reinforced soil walls using ANN-based response surface method", Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1-23. https://doi.org/10.1080/17499518.2022.2046790.
  40. Ramesh, H., Kulkarni, M.G.R., Raghunandan, M.E. and Nethravathi, S. (2022), "Suitability of bagasse ash-lime mixture for the stabilization of black cotton soil", Geomech. Eng., 28(3), 255-263. https://doi.org/10.12989/gae.2022.28.3.255.
  41. Rastegarnia, A., Alizadeh, S.M.S., Esfahani, M.K., Amini, O. and Utyuzh, A.S. (2020), "The effect of hydrated lime on the petrography and strength characteristics of Illite clay", Geomech. Eng., 22(2), 143-152. https://doi.org/10.12989/gae.2020.22.2.143.
  42. Razeghi, H.R., and Ensani, A. (2023), "Clayey sand soil interactions with geogrids and geotextiles using large-scale direct shear tests", Int. J. Geosynthetics Ground Eng., 9(2), 24. https://doi.org/10.1007/s40891-023-00443-0.
  43. Roodi, G.H. and Zornberg, J.G. (2020), "Long-term field evaluation of a geosynthetic-stabilized roadway founded on expansive clays", J. Geotech. Geoenviron. Eng., 146(4), 05020001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002206.
  44. Saeed, K.A.H., Kassim, K.A., Yunus, N.Z.M. and Nur, H. (2015), "Physico-chemical characterization of lime stabilized tropical kaolin clay", J. Teknologi, 72(3). https://doi.org/10.11113/jt.v72.4021.
  45. Selvakumar, S. and Soundara, B. (2019), "Swelling behaviour of expansive soils with recycled geofoam granules column inclusion", Geotext. Geomembranes, 47(1), 1-11. https://doi.org/10.1016/j.geotexmem.2018.08.007.
  46. Stoltz, G., Cuisinier, O. and Masrouri, F. (2014), "Weathering of a lime-treated clayey soil by drying and wetting cycles", Eng. Geol., 181, 281-289. https://doi.org/10.1016/j.enggeo.2014.08.013.
  47. Sujatha, E.R., Geetha, A., Jananee, R. and Karunya, S. (2018), "Strength and mechanical behaviour of coir reinforced lime stabilized soil", Geomech. Eng., 16(6), 627-634. https://doi.org/10.12989/GAE.2018.16.6.627
  48. Suman, S., Mahamaya, M. and Das, S.K. (2016), "Prediction of maximum dry density and unconfined compressive strength of cement stabilised soil using artificial intelligence techniques", Int. J. Geosynth. Ground Eng., 2(2), 11. https://doi.org/10.1007/s40891-016-0051-9.
  49. Tabarsa, A., Latifi, N., Osouli, A. and Bagheri, Y. (2021), "Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support vector machines", Front. Struct. Civil Eng., 15(2), 520-536. https://doi.org/10.1007/s11709-021-0689-9.
  50. Tang, C., Shi, B., Gao, W., Chen, F. and Cai, Y. (2007), "Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil", Geotext. Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.enggeo.2014.08.013.
  51. Tatlisoz, N., Edil, T.B. and Benson, C.H. (1998), "Interaction between reinforcing geosynthetics and soil-tire chip mixtures", J. Geotech. Geoenviron. Eng., 124(11), 1109-1119. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1109).
  52. Theobald, O. (2017), Machine Learning for Absolute Beginners: A Plain English Introduction, Scatterplot press,
  53. Tiwari, N. and Satyam, N. (2020), "An experimental study on the behavior of lime and silica fume treated coir geotextile reinforced expansive soil subgrade", Eng. Sci. Technol. Int. J., 23(5), 1214-1222. https://doi.org/10.1016/j.jestch.2019.12.006.
  54. Vangla, P. and Gali, M.L. (2016), "Effect of particle size of sand and surface asperities of reinforcement on their interface shear behaviour", Geotext. Geomembranes, 44(3), 254-268. https://doi.org/10.1016/j.geotexmem.2015.11.002.
  55. Wang, D., Abriak, N.E., Zentar, R. and Chen, W. (2013), "Effect of lime treatment on geotechnical properties of Dunkirk sediments in France", Road Mater. Pavement Design, 14(3), 485-503. https://doi.org/10.1080/14680629.2012.755935.
  56. Xue, X., Yang, X. and Chen, X. (2014), "Application of a support vector machine for prediction of slope stability", Sci. China Technol. Sci., 57(12), 2379-2386. https://doi.org/10.1007/s11431-014-5699-6.
  57. Ye, B., Ye, G., Nagaya, J. and Sugano, T. (2012), "Numerical simulation of shaking-table tests on soil-stabilized, geosynthetic-reinforced quay-wall structures", Geosynth. Int., 19(1), 54-61. https://doi.org/10.1680/gein.2012.19.1.54.