참고문헌
- Abdi, M.R., Ghalandarzadeh, A. and Shafiei Chafi, L. (2021), "An investigation into the effects of lime on compressive and shear strength characteristics of fiber-reinforced clays", J. Rock Mech. Geotech. Eng., 13(4), 885-898. https://doi.org/10.1016/j.jrmge.2020.11.008.
- Abu-Farsakh, M., Coronel, J. and Tao, M. (2007), "Effect of soil moisture content and dry density on cohesive soil-geosynthetic interactions using large direct shear tests", J. Mater. civil Eng., 19(7), 540-549. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(540).
- Al-Mukhtar, M., Khattab, S. and Alcover, J.F. (2012), "Microstructure and geotechnical properties of lime-treated expansive clayey soil", Eng. Geol., 139, 17-27. https://doi.org/10.1016/j.enggeo.2012.04.004.
- Al-Mukhtar, M., Lasledj, A. and Alcover, J.F. (2010), "Behaviour and mineralogy changes in lime-treated expansive soil at 20 C", Appl. Clay Sci., 50(2), 191-198. https://doi.org/10.1016/j.clay.2010.07.023.
- Al-Swaidani, A., Hammoud, I. and Meziab, A. (2016), "Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil", J. Rock Mech. Geotech. Eng., 8(5), 714-725. https://doi.org/10.1016/j.jrmge.2016.04.002.
- Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.
- Arulrajah, A., Rahman, M.A., Piratheepan, J., Bo, M.W. and Imteaz, M.A. (2014), "Evaluation of Interface Shear Strength Properties of Geogrid-Reinforced Construction and Demolition Materials Using a Modified Large-Scale Direct Shear Testing Apparatus", J. Mater. Civil Eng., 26(5), 974-982. https://doi.org/10.1061/(asce)mt.1943-5533.0000897.
- ASTM D- 3080. (2003), Standard test method for direct shear test of soils under consolidated drained conditions, Annual book of ASTM standards; 4(8) United States.
- ASTM D- 5321. (2014), Standard test method for determining the shear strength of soil-geosynthetic and geosynthetic-geosynthetic interfaces by direct shear, United States.
- Basudhar, P.K. (2010), "Modeling of soil-woven geotextile interface behavior from direct shear test results", Geotext. Geomembranes, 28(4), 403-408. https://doi.org/10.1016/j.geotexmem.2009.12.005.
- Behnood, A. (2018), "Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques", Transport. Geotech., 17, 14-32. https://doi.org/10.1016/j.trgeo.2018.08.002.
- Bell, F. (1996), "Lime stabilization of clay minerals and soils", Eng. Geol., 42(4), 223-237. https://doi.org/10.1016/0013-7952(96)00028-2.
- Bergado, D., Chai, J., Abiera, H., Alfaro, M. and Balasubramaniam, A. (1993), "Interaction between cohesive-frictional soil and various grid reinforcements", Geotext. Geomembranes, 12(4), 327-349. https://doi.org/10.1016/0266-1144(93)90008-C.
- Bishop, A.W. (1971), "Shear strength parameters for undisturbed and remolded soil specimens", Roscoe Memorial Symposium, Cambridge.
- Bozbey, I., Kelesoglu, M.K., Demir, B., Komut, M., Comez, S., Ozturk, T., Mert, A., Ocal, K. and Oztoprak, S. (2018), "Effects of soil pulverization level on resilient modulus and freeze and thaw resistance of a lime stabilized clay", Cold Reg. Sci. Technol., 151, 323-334. https://doi.org/10.1016/j.coldregions.2018.03.023.
- Brownlee, J. (2016), Machine learning mastery with Python: understand your data, create accurate models, and work projects end-to-end, Machine Learning Mastery.
- Cai, Y., Shi, B., Ng, C.W. and Tang, C.S. (2006), "Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil", Eng. Geol., 87(3), 230-240. https://doi.org/10.1016/j.enggeo.2006.07.007.
- Chai, J.C., Saito, A. and Hino, T. (2024), "Effect of Surface Roughness on Soil-Geogrid/Geotextile Interface Shear Strengths", Int. J. Geosynth. Ground Eng., 10. https://doi.org/10.1007/s40891-024-00558-y.
- Choudhary, A.K. and Krishna, A.M. (2016), "Experimental Investigation of Interface Behaviour of Different Types of Granular Soil/Geosynthetics", Int. J. Geosynth. Ground Eng., 2(1), 1-11. https://doi.org/10.1007/s40891-016-0044-8.
- Cowell, M. (1993), "Comparison of pull-out performance of geogrids and geotextiles", Proceedings of Geosynthetics, Roseville.
- Dash, S.K. and Hussain, M. (2012), "Lime stabilization of soils: reappraisal", J. Mater. Civil Eng., 24(6), 707-714. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000431
- Dinarvand, R. and Ardakani, A. (2022), "Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling", Geomech. Eng., 28(5), 505-520. https://doi.org/10.12989/gae.2022.28.5.505.
- Gandomi, A.H., Yun, G.J. and Alavi, A.H. (2013), "An evolutionary approach for modeling of shear strength of RC deep beams", Mater. Struct., 46, 2109-2119. https://doi.org/10.1617/s11527-013-0039-z.
- Ghanizadeh, A.R., Heidarabadizadeh, N., Bayat, M. and Khalifeh, V. (2022), "Modeling of unconfined compressive strength and Young's modulus of lime and cement stabilized clayey subgrade soil using Evolutionary Polynomial Regression (EPR)", Int. J. Min. Geo-Eng., https://doi.org/10.22059/IJMGE.2022.306688.594858.
- Guney, Y., Sari, D., Cetin, M. and Tuncan, M. (2007), "Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil", Build. Environ., 42(2), 681-688. https://doi.org/10.1016/j.buildenv.2005.10.035.
- Hebeler, G.L., Martinez, A. and Frost, J.D. (2016), "Shear zone evolution of granular soils in contact with conventional and textured CPT friction sleeves", KSCE J. Civil Eng., 20(4), 1267-1282. https://doi.org/10.1007/s12205-015-0767-6.
- Jahandari, S., Saberian, M., Zivari, F., Li, J., Ghasemi, M. and Vali, R. (2019), "Experimental study of the effects of curing time on geotechnical properties of stabilized clay with lime and geogrid", Int. J. Geotech. Eng., 13(2), 172-183. https://doi.org/10.1080/19386362.2017.1329259.
- Jalal, F.E., Xu, Y., Iqbal, M., Javed, M.F. and Jamhiri, B. (2021), "Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP", J. Environ. Management, 289, 112420. https://doi.org/10.1016/j.jenvman.2021.112420.
- Kanungo, D.P., Sharma, S. and Pain, A. (2014), "Artificial neural network (ANN) and regression tree (CART) applications for the indirect estimation of unsaturated soil shear strength parameters", Front. Earth Sci., 8(3), 439-456. https://doi.org/10.1007/s11707-014-0416-0.
- Khunt, S., Kantesaria, N., and Sachan, A. (2020), "Interface shear strength behaviour of marginal soils with geotextiles and geogrids", Proceedings of the Geo-Congress 2020, February.
- Kumar, A., Walia, B.S. and Abjaj, A. (2007), "Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil", J. Mater. Civil Eng., 19(3), 242-248. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(242)
- Lin, P., Chen, X., Jiang, M., Song, X., Xu, M. and Huang, S. (2022), "Mapping shear strength and compressibility of soft soils with artificial neural networks", Eng. Geol., 300, 106585. https://doi.org/10.1016/j.enggeo.2022.106585.
- Liu, C.N., Ho, Y.H. and Huang, J.W. (2009), "Large scale direct shear tests of soil/PET-yarn geogrid interfaces", Geotext. Geomembranes, 27(1), 19-30. https://doi.org/10.1016/j.geotexmem.2008.03.002.
- Lopes, M.L. (2002), Soil-Geosynthetic Interaction, Geosynthetics and Their Applications. Thomas Telford Publishing.
- Marienfeld, M.L. (2013), "Geosynthetics and common sense give you design options", Airfield and Highway Pavement, Los Angeles, June.
- Okonta, F.N. and Nxumalo, S.P. (2022), "Strength properties of lime stabilized and fibre reinforced residual soil", Geomech. Eng., 28(1), 35-48. https://doi.org/10.12989/gae.2022.28.1.035.
- Pham, B.T., Son, L.H., Hoang, T.A., Nguyen, D.M. and Tien Bui, D. (2018), "Prediction of shear strength of soft soil using machine learning methods", CATENA, 166, 181-191. https://doi.org/10.1016/j.catena.2018.04.004.
- Porbaha, A. (1996), "Geotextile reinforced lime treated cohesive soil retaining walls", Geosynth. Int., 3(3), 393-405. https://doi.org/10.1680/gein.3.0068.
- Pramanik, R., Mukherjee, S. and Sivakumar Babu, G. (2022), "Probabilistic assessment of geosynthetic reinforced soil walls using ANN-based response surface method", Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1-23. https://doi.org/10.1080/17499518.2022.2046790.
- Ramesh, H., Kulkarni, M.G.R., Raghunandan, M.E. and Nethravathi, S. (2022), "Suitability of bagasse ash-lime mixture for the stabilization of black cotton soil", Geomech. Eng., 28(3), 255-263. https://doi.org/10.12989/gae.2022.28.3.255.
- Rastegarnia, A., Alizadeh, S.M.S., Esfahani, M.K., Amini, O. and Utyuzh, A.S. (2020), "The effect of hydrated lime on the petrography and strength characteristics of Illite clay", Geomech. Eng., 22(2), 143-152. https://doi.org/10.12989/gae.2020.22.2.143.
- Razeghi, H.R., and Ensani, A. (2023), "Clayey sand soil interactions with geogrids and geotextiles using large-scale direct shear tests", Int. J. Geosynthetics Ground Eng., 9(2), 24. https://doi.org/10.1007/s40891-023-00443-0.
- Roodi, G.H. and Zornberg, J.G. (2020), "Long-term field evaluation of a geosynthetic-stabilized roadway founded on expansive clays", J. Geotech. Geoenviron. Eng., 146(4), 05020001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002206.
- Saeed, K.A.H., Kassim, K.A., Yunus, N.Z.M. and Nur, H. (2015), "Physico-chemical characterization of lime stabilized tropical kaolin clay", J. Teknologi, 72(3). https://doi.org/10.11113/jt.v72.4021.
- Selvakumar, S. and Soundara, B. (2019), "Swelling behaviour of expansive soils with recycled geofoam granules column inclusion", Geotext. Geomembranes, 47(1), 1-11. https://doi.org/10.1016/j.geotexmem.2018.08.007.
- Stoltz, G., Cuisinier, O. and Masrouri, F. (2014), "Weathering of a lime-treated clayey soil by drying and wetting cycles", Eng. Geol., 181, 281-289. https://doi.org/10.1016/j.enggeo.2014.08.013.
- Sujatha, E.R., Geetha, A., Jananee, R. and Karunya, S. (2018), "Strength and mechanical behaviour of coir reinforced lime stabilized soil", Geomech. Eng., 16(6), 627-634. https://doi.org/10.12989/GAE.2018.16.6.627
- Suman, S., Mahamaya, M. and Das, S.K. (2016), "Prediction of maximum dry density and unconfined compressive strength of cement stabilised soil using artificial intelligence techniques", Int. J. Geosynth. Ground Eng., 2(2), 11. https://doi.org/10.1007/s40891-016-0051-9.
- Tabarsa, A., Latifi, N., Osouli, A. and Bagheri, Y. (2021), "Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support vector machines", Front. Struct. Civil Eng., 15(2), 520-536. https://doi.org/10.1007/s11709-021-0689-9.
- Tang, C., Shi, B., Gao, W., Chen, F. and Cai, Y. (2007), "Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil", Geotext. Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.enggeo.2014.08.013.
- Tatlisoz, N., Edil, T.B. and Benson, C.H. (1998), "Interaction between reinforcing geosynthetics and soil-tire chip mixtures", J. Geotech. Geoenviron. Eng., 124(11), 1109-1119. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1109).
- Theobald, O. (2017), Machine Learning for Absolute Beginners: A Plain English Introduction, Scatterplot press,
- Tiwari, N. and Satyam, N. (2020), "An experimental study on the behavior of lime and silica fume treated coir geotextile reinforced expansive soil subgrade", Eng. Sci. Technol. Int. J., 23(5), 1214-1222. https://doi.org/10.1016/j.jestch.2019.12.006.
- Vangla, P. and Gali, M.L. (2016), "Effect of particle size of sand and surface asperities of reinforcement on their interface shear behaviour", Geotext. Geomembranes, 44(3), 254-268. https://doi.org/10.1016/j.geotexmem.2015.11.002.
- Wang, D., Abriak, N.E., Zentar, R. and Chen, W. (2013), "Effect of lime treatment on geotechnical properties of Dunkirk sediments in France", Road Mater. Pavement Design, 14(3), 485-503. https://doi.org/10.1080/14680629.2012.755935.
- Xue, X., Yang, X. and Chen, X. (2014), "Application of a support vector machine for prediction of slope stability", Sci. China Technol. Sci., 57(12), 2379-2386. https://doi.org/10.1007/s11431-014-5699-6.
- Ye, B., Ye, G., Nagaya, J. and Sugano, T. (2012), "Numerical simulation of shaking-table tests on soil-stabilized, geosynthetic-reinforced quay-wall structures", Geosynth. Int., 19(1), 54-61. https://doi.org/10.1680/gein.2012.19.1.54.