DOI QR코드

DOI QR Code

Investigation of Thermo-mechanical Characteristics for Remanufacturing of a ATC Part using a DED Process

DED 공정을 이용한 ATC 부품의 재제조를 위한 열-기계 특성 고찰

  • K. K. Lee ;
  • D. G. Ahn (School of Mechanical Engineering, Chosun University)
  • 이광규 (조선대학교 기계공학과) ;
  • 안동규 (조선대학교 기계공학과)
  • Received : 2024.07.22
  • Accepted : 2024.07.25
  • Published : 2024.08.01

Abstract

Interest in remanufacturing of part has significantly increased to reduce used material and energy together. The directed energy deposition (DED) process has widely applied to remanufacturing of the part. An excessive residual stress takes place in the vicinity of the deposited region by the DED process due to rapid heating and rapid cooling (RHRC) phenomenon. The excessive residual stress decreases the reliability of the remanufactured part. Therefore, thermo-mechanical analysis for the remanufacturing of the part is needed to investigate heat transfer and residual stress characteristics in the vicinity of the deposited region. The thermo-mechanical analysis of a large volume deposition is significantly difficult to perform due to the requirement of a long computation time and a large computer memory. The goal of this paper is to investigate thermo-mechanical characteristics for remanufacturing of the ATC part using a DED process. The methodology of the thermo-mechanical analysis for a large volume deposition is proposed. From the results of analysis, heat transfer and residual stress characteristics during deposition and cooling stages are investigated. In addition, the proper deposition strategy from the viewpoint of the residual stress is discussed.

Keywords

Acknowledgement

이 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원 (No.RS-2023-00219369) 및 산업통상자원부의 재원으로 한국에너지기술평가원의 지원(No.20206310200010) 을 받아 수행된 연구임.

References

  1. J. M. Allwood, C. F. Dunant, R. C. Lupton, C. J. Cleaver, A. C. H. Serrenho, J. M. C. Azevedo, P. M. Horton, C. Clare, H. Low, I. Horrocks, J. Murray, J. Lin, J. M. Cullen, M. Ward, M. Salamati, T. Felin, T. Ibell, W. Zho, W. Hawkins, 2019, Absolut Zero, Apolllo-University of Cambridge Repository. https://doi.org/10.17863/CAM.46075
  2. I. D'Adamo, P. Rosa, 2016, Remanufacturing in Industry: Advices from the Field, Int. J. Adv. Manuf. Technol., Vol. 86, pp. 2575-2584. https://doi.org/10.1007/s00170-016-8346-5
  3. J. Ostlin, E. Sundin, M. Bjorkman, 2008, Importance of closed-loop supply chain relationships for product remanufacturing, Int. J. Prod. Econ., Vol. 115, No. 2, pp. 336-348. https://doi.org/10.1016/j.ijpe.2008.02.020
  4. J. H. Ha, W. S. Woo, Y. H. Roh, C. M. Lee, 2017, A Study on the Development of Standardization Technology for Remanufacturing Process of Used Vertical Machining Center, J. Kor. Soc. Precis. Eng., Vol. 34, No. 8, pp. 517-524. https://doi.org/10.7736/KSPE.2017.34.8.517
  5. R. D. A. Wahab, A. H. Azman, 2019, Restoration of Remanufacturable Components Using Additive Manufacturing (D. Dao, R. Howlett, R. Setchi, L. Vlacic), Springer, Cham., Vol. 130, pp. 193-198. https://doi.org/10.1007/978-3-030-04290-5_20
  6. D. G. Ahn, 2016, Direct Metal Additive Manufacturing Processes and Their Sustainable Applications for Green Technology: A, Int. J. Precis. Eng. Manuf. -GT., Vol. 3, No. 4, pp. 381-395. https://doi.org/10.1007/s40684-016-0048-9
  7. R. D. A. Wahab, A. H. Azman, 2019, Additive Manufacturing for Repair and Restoration in Remanufacturing: An Overview from Object Design and Systems Perspectives, Processes, Vol. 7, No. 11, pp. 802. https://doi.org/10.3390/pr7110802
  8. A. Saboori, P. G. Piscopo, M. Lai, A. Salmi, S. Biamino, 2020, An Investigation on the Effect of Deposition Pattern on the Microstructure, Mechanical Properties and Residual Stress of 316L Produced by Directed Energy Deposition, Mater. Sci. Eng. A, Vol. 780, No. 7, pp. 139179. https://doi.org/10.1016/j.msea.2020.139179
  9. X. Lu, M. Chiumenti, M. Cervera, J. Li, X. Lin, L. Ma, G. Zhang, E. Liang, 2021, Substrate Design to Minimize Residual Stresses in Directed Energy Deposition AM Processes, Mater. Des., Vol. 202, pp. 109525. https://doi.org/10.1016/j.matdes.2021.109525
  10. D. A. Kim, K. K. Lee, D. G. Ahn, 2021, Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts, Trans. Mater. Process., Vol. 30, No. 3, pp. 109- 118. https://doi.org/10.5228/KSTP.2021.30.3.109
  11. A. Alissultan, K. K. Lee, D. G. Ahn, 2021, Investigation of the Influence of Radius and Corner Position on the Residual Stress Distribution in the Vicinity of the Repaired Region via Directed Energy Deposition by using Finite Element Analysis, J. Kor. Soc. Manuf. Proc. Eng., Vol. 20, No. 7, pp. 33-40. https://doi.org/10.14775/ksmpe.2021.20.07.033
  12. Z. Hu, W. Yuan, 2023, Finite Element Analysis for Residual Stress of TB18 Billet Produced by Laser Directed Energy Deposition, Mater. Res. Express, Vol. 10, No. 3, pp. 036511. https://doi.org/10.1088/2053-1591/acc448
  13. A. Kiran, J. Hodek, J. Vavrik, M. Urbanek, J. Dzugan, 2020, Numerical Simulation Development and Computational Optimization for Directed Energy Deposition Additive Manufacturing Process, Materials, Vol. 13, No. 11, pp. 2666. https://doi.org/10.3390/ma13112666
  14. J. Epp, J. Dong, H. Meyer, A. Bohlen, 2020, Analysis of Cyclic Phase Transformations During Additive Manufacturing of Hardenable Tool Steel by In-situ Xray Diffraction, Scr. Mater., Vol. 177, pp. 27-31. https://doi.org/10.1016/j.scriptamat.2019.09.021
  15. JMatPro, https://www.sentesoftware.co.uk/jmatpro (accessed on 31 May 2024)