Abstract
Knowledge mining is a research field that applies various techniques such as data modeling, information extraction, analysis, visualization, and result interpretation to find valuable knowledge from diverse large datasets. It plays a crucial role in transforming raw data into useful knowledge across various domains like business, healthcare, and scientific research etc. In this paper, we propose analytical techniques for performing knowledge discovery and data mining from various data by extending the Formal Concept Analysis method. It defines algorithms for representing diverse formats and structures of the data to be analyzed, including models such as many-valued data table data and triadic data table, as well as algorithms for data processing (dyadic scaling and flattening) and the construction of concept hierarchies and the extraction of association rules. The usefulness of the proposed technique is empirically demonstrated by conducting experiments applying the proposed method to public open data.
지식 마이닝은 다종다양한 대량의 데이터로부터 데이터 모델링, 정보추출 및 분석, 가시화, 결과 해석 등과 같은 다양한 기법들을 적용하여 데이터로부터 유용하고 가치 있는 지식을 찾아내는 연구 분야로서, 비즈니스, 의료, 과학 연구 등 다양한 영역에서 원시 데이터를 유용한 지식으로 변환하기 위한 중요한 역할을 수행한다. 본 논문에서는 형식개념분석기법을 확장하여 다종다양한 데이터로부터 지식발견과 데이터 마이닝을 수행하기 위한 분석기법을 제안한다. 분석대상 데이터의 다양한 형식과 구조를 표현하기 위한 제반 모델들(다치데이터 테이블, 삼원데이터테이블)과 데이터처리(이진화 및 평탄화) 및 개념계층구조 구축과 연관규칙 추출을 위한 알고리즘들을 정의하고, 공공오픈데이터를 대상으로 본 논문에서 제안한 기법을 적용한 실험을 수행하여 제안 기법의 유용성을 실증하였다.