References
- S. J. Nightingale, H. Farid, "AI-synthesized faces are indistinguishable from real faces and more trustworthy," Proceedings of the National Academy of Sciences, Vol. 119, No. 8, e2120481119, Feb, 2022.
- I. Korshunova, W. Shi, J. Dambre, and L. Theis, "Fast face-swap using convolutional neural networks," in Proc. of the IEEE International Conference on Computer Vision(ICCV), Venice, Italy, 2017, pp. 3677-3685.
- A. A. Maksutov, V. O. Morozov, A. A. Lavrenov, and A. S. Smirnov, "Methods of deepfake detection based on machine learning," in 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg and Moscow, Russia, 2020, pp. 408-411.
- H. Kim, H. Kim, J. Rew and E. Hwang, "FLSNet: Robust facial landmark semantic segmentation," IEEE Access, Vol. 8, pp. 116163-116175, June, 2020. https://doi.org/10.1109/ACCESS.2020.3004359
- H. Kim, H. Kim, S. Rho, and E. Hwang, "Augmented EMTCNN: A fast and accurate facial landmark detection network," Applied Sciences, Vol. 10, No. 7, pp. 2253, March, 2020.
- Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, "Celeb-df: A large-scale challenging dataset for deepfake forensics," in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, 2020, pp. 3207-3216.
- A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niesner, "Faceforensics++: Learning to detect manipulated facial images," in Proc. of the IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, Korea, 2019, pp. 1-11.
- S. Nam, S. Oh, J. Kang, C. Shin, Y. Jo, Y. Kim, K. Kim, M. Shim, S. Lee, Y. Kim, S. Han, G. Nam, D. Lee, S. Jeon, I. Cho, W. Cho, S. Yang, D. Kim, H. Kang, S. Hwang, and S. Kim, (2019, Jan.). Real and Fake Face Detection [Online], Available: https://www.kaggle.com/datasets/ciplab/real-and-fake-face-detection.
- B. Zi, M.Chang, J. Chen, X. Ma, and Y. G. Jiang, "Wilddeepfake: A challenging real-world dataset for deepfake detection," in Proc. of the 28th ACM International Conference on Multimedia, Seattle, USA, 2020, pp. 2382-2390.
- L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, and B. Guo, "Face x-ray for more general face forgery detection," in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, 2020, pp. 5001-5010.
- F. Lugstein, S. Baier, G. Bachinger, and A. Uhl, "PRNU-based deepfake detection," in Proc. of the 2021 ACM Workshop on Information Hiding and Multimedia Security(IH&MMSec), New York, USA, 2021, pp. 7-12.
- T. Yang, Z. Huang, J. Cao, L. Li, and X. Li, "Deepfake network architecture attribution," in Proc. of the AAAI Conference on Artificial Intelligence(AAAI), Vol. 36, No. 4, pp. 4662-4670, June, 2022.
- R. Durall, M. Keuper, F. J. Pfreundt, and J. Keuper, "Unmasking deepfakes with simple features," arXiv preprint arXiv:1911.00686, 2019.
- X. Yang, Y. Li, and S. Lyu. "Exposing deep fakes using inconsistent head poses," In ICASSP 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019, pp. 8261-8265.
- F. Matern, C. Riess, and M. Stamminger, "Exploiting visual artifacts to expose deepfakes and face manipulations," In 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), Waikoloa, HI, USA, 2019, pp. 83-92.
- C. M. Liy, and L. Y. U. S. InIctuOculi, "Exposing ai created fakevideos by detecting eye blinking," in Proc. of the 2018 IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 2018, pp. 11-13.
- U. A. Ciftci, I. Demir, and L. Yin, (2020, September). "How do the hearts of deep fakes beat? deep fake source detection via interpreting residuals with biological signals," In 2020 IEEE International Joint Conference on Biometrics (IJCB), Online, 2020, pp. 1-10.
- R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales, and J. Ortega-Garcia, "Deepfakes and beyond: A survey of face manipulation and fake detection," Information Fusion, Vol. 64, pp. 131-148, Dec, 2020. https://doi.org/10.1016/j.inffus.2020.06.014
- R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, "SLIC superpixels compared to state-of-the-art superpixel methods," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, No. 11, pp. 2274-2282, 2012. https://doi.org/10.1109/TPAMI.2012.120
- G. Li, and Y. Yu, "Visual saliency based on multiscale deep features," in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, 2015, pp. 5455-5463.
- M. D. Zeiler and R. Fergus, "Visualizing and Understanding Convolutional Networks," in Proc. of the European Conference on Computer Vision(ECCV), Zurich, Switzerland, 2014, pp. 818-833.
- S. Suwarno, and K. Kevin, "Analysis of face recognition algorithm: Dlib and opencv," Journal of Informatics and Telecommunication Engineering, Vol. 4, No. 1, pp. 173-184, 2020. https://doi.org/10.31289/jite.v4i1.3865
- R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-cam: Visual explanations from deep networks via gradient-based localization," in Proc. of the IEEE International Conference on Computer Vision(ICCV), Venice, Italy, 2017, pp. 618-626.