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FIXED POINT RESULTS ON GRAPHICAL PARTIAL METRIC
SPACES WITH AN APPLICATION

Shivani Kukreti a, Gopi Prasad b, ∗ and Ramesh Chandra Dimri c

Abstract. Aim is to present fixed point theorems for contractive mappings in the
settings of partial metric spaces equipped with graph. To substantiate the claims
and importance of newly obtained fixed point results, we present an application
and non-trivial examples. In the light of an application, we ensure the existence
of a solution of the linear integral equation via fixed point results. In this way,
we generalize, extend and modify some important recent fixed point results of the
existing literature, that is, in the settings of partial metric spaces equipped with
graph.

1. Introduction

Fixed point theory is a flourishing branch of mathematical analysis that deals
with an invariant point of a system that remains unchanged whichever transfor-
mation it undergoes. That particular point is considered to be the solution of the
mathematical problem corresponding to that system. The versatility of fixed point
theorems permits its generalizations and extensions in various branches of mathe-
matical sciences.

The first pivotal result in fixed point theory that acclaimed immense attention
was Banach Contraction Principle (Bcp) investigated by Stefan Banach [7] in 1922.
In the Bcp symmetric contraction assumption of the self-mapping guaranteed the
existence of the fixed point in the complete metric settings. The Bcp soon became
the guiding light for many eminent researchers and generalized in the various metric
settings and this process is still on. In this continuation, Matthews [14] extended
the concept of metric space and introduced partial metric space by incorporating
the idea that the of self distance of any point may not be zero and proved fixed point
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result in partial metric settings. Afterwards Oscar Valero [25] and B.E. Rhoades [22]
presented some interesting generalizations of the Bcp on partial and usual metric
spaces. Further this idea was followed, generalized and modified by many researchers
in the various metric settings (see [2, 3, 4, 5, 6, 9, 10, 11, 15, 25]).

On the another point of note, Jachymski [12] established an interesting metrical
fixed point results by incorporating the notion of graphical contraction mapping be-
sides presenting an application to polynomial approximation concerning Bernstein
operators via contraction principle on the spaces of continuous functions. Mean-
while the Bcp to ordered metric settings was highlighted by Ran and Reurings
[23] and further extended by Nieto and López [16] besides presenting some inter-
esting applications to ordinary differential equations. Afterwards this notion was
extended and utilize by several researcher and there exist detailed generalization on
this theme but keeping in view of requirement of this presentation, we merely refer
[1, 13, 17, 18, 19, 20, 24].

Motivated by this work, the main goal of this research presentation is to investi-
gate a graphical variant of fixed point theorem in the settings of partial metric spaces
equipped with graph and some other weaker graphical metrical notions. Moreover,
we present an application of the main results by solving the linear integral equations
in the domain of spaces of continuous functions which ensures the utility of such
investigations.

2. Preliminaries

In this section, we discuss relevant necessary background for this presentation.
Throughout the presentation, N the set of natural numbers, and N0 = N ∪ {0}) the
set of non-negative integers.

Matthews [14] introduce the concept of partial metric space as follows :

Definition 2.1. A partial metric on a set X is a function p : X × X → R+ such
that for all u, v, w ∈ X :
(p1) u = v ⇔ p(u, u) = p(u, v) = p(v, v),
(p2) p(u, u) ≤ p(u, v),
(p3) p(u, v) = p(v, u),
(p4) p(u, v) ≤ p(u,w) + p(w, v)− p(w, w).
Note that the self-distance of any point need not to be zero, hence the idea of
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generalizing metrics so that a metric on a non-empty set X is precisely partial
metric p on X such that for any u ∈ X, p(u, u) = 0.

Example 2.2 ([14]). Let a function p : R+ × R+ → R+ be defined by p(u, v) =
max{u, v} for any u, v ∈ R+. Then, (R+, p) is a partial metric space where the
self-distance for any point u ∈ R+ is its value itself.

Each partial metric p on X generates a T0 topology Tp on X, which has as a base
the family of open p-balls Bp(u, ε), u ∈ X, ε > 0, where

Bp(u, ε) = {v ∈ X : p(u, v) < p(u, u) + ε}
for all u ∈ X and ε > 0.

If p is a partial metric on X, then the function ps : X ×X → R+ defined by

ps(u, v) = 2p(u, v)− p(u, u)− p(v, v)

is a metric on X.

Definition 2.3 ([14]). Let (X, p) be a partial metric space and {un} be a sequence
in X. Then
(a) {un} converges to a point u ∈ X if and only if p(u, u) = limn→∞ p(u, un),
(b) {un} is a Cauchy sequence if there exists (and is finite) limn, m→∞ p(un, um).

Definition 2.4 ([14]). A partial metric space (X, p) is said to be complete if every
Cauchy sequence {un} in X converges with respect to Tp to a point u ∈ X such that
p(u, u) = limn,m→∞ p(un, um).

Lemma 2.5 ([14]). Let (X, p) be a partial metric space. Then
(a) {un} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the
metric space (X, ps),
(b) (X, p) is complete if and only if the metric space (X, ps) is complete. Further-
more, limn→∞ ps(un, u) = 0 if and only if

p(u, u) = lim
n→∞ ps(un, u) = lim

n, m→∞ p(un, um).

Jachymski [12] introduced notion of graph in metric spaces to obtained the graph-
ical analogous of Banach fixed point theorem. Consider X to be a non-empty set
and ∆ be the notation for the diagonal points of X × X. Then G can be referred
as directed graph with the set of vertices V (G) concurring with X and E(G) be-
ing the edge set which contains edges of the graph including all the loops that is
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∆ ⊂ E(G). Also, assume that the graph omits the parallel edges, so that the ordered
pair (V (G);E(G)) represents the graph. Also, by assigning distance of two vertices
to the edge, graph can be referred as a weighted graph. The graph obtained by
reversing the direction of edges is termed as conversion of graph and is denoted by
G−1. So, we have

E(G) = {(u, v) ∈ X ×X}.
Let Ğ denote the graph obtained without mentioning direction of edges and treating
the graph as directed one as the edge set is symmetric for directed graph.

Definition 2.6 ([12]). Let G be a graph defined on the non-empty set X. Then the
sequence {un} ⊂ X is :
(a) edge-preserving if (un, un+1) ∈ E(G), n ∈ N0

(b) (X, d) is G-complete if every edge-preserving Cauchy sequence converges in X.

Definition 2.7. Let (X, d) be a metric space and let G be a directed graph on a non-
empty set X, then G is p- selfclosed if for any edge preserving sequence {un} ⊂ X,
so that un → u, there exists a subsequence {unk

} of {un} with ({unk
}, {un}) ∈

E(G), k ∈ N0.

Definition 2.8 ([19]). Let T be a self mappings of a metric space (X, d) equipped
with a graph G on X, then G is TG-transitive if for any u, v, w ∈ X, we have

(Tu, Tv), (Tv, Tw) ∈ E(G) =⇒ (Tu, Tw) ∈ E(G).

Definition 2.9 ([12]). Let T be a self mappings of a metric space (X, d) equipped
with a graph G on X, then T is G-continuous at u if for any edge preserving sequence
{un} so that un → u, we have Tun → Tu.

Definition 2.10 ([12]). A graph G is connected if there is a path between any
two vertices, and is called weakly connected if Ğ is connected, where Ğ denotes the
conversion of graph, that is the graph obtained from G by reversing the direction of
edges.

Also define
∗
G = G ∪ Ğ. Also it is observed that Ğ ⊂ G is also a graph, where

(u, v) ∈ Ğ if (u, v) ∈ G such that u, v are distinct.

Definition 2.11. Let (X, p) be a partial metric space endowed with graph G. A
subset N ⊂ Xis said to be G-precomplete if each edge-preserving Cauchy sequence
{un} ⊂ N converges to some u ∈ X.
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The following useful lemmas are necessary to prove the main results.

Lemma 2.12 ([14]). Let (X, p) be a partial metric space
(a) A sequence {un} is Cauchy in (X, p) if and only if it is Cauchy in (X, dp)
(b) (X, p) is complete if and only if (X, dp) is complete. Moreover, lim

n→∞dp(un, u) =

0 ⇐⇒ p(u, u) = lim
n→∞dp(un, um).

Where dp is the usual metric and relation between p and dp is given as

dp((u1, u2) = 2p(u1, u2)− p(u1, u1)− p(u2, u2)

Lemma 2.13 ([14]). Let (X, p) be a partial metric space and {un} ⊂ X such that
un → u, for some u ∈ X with p(u, u) = 0. Then for any u* ∈ X, we have
lim

n→∞p(un, u*) = p(u, u*).

3. Main Results

In this section, at first, we establish fixed point results under non-linear con-
traction in partial metric spaces. Then, we prove uniqueness result and furnish a
suitable example, corollaries and some important remarks.

Let Ψ be the set of all mappings ψ : [0,∞) → [0,∞) which satisfies the following:
(Ψ1) : ψ is non-decreasing;
(Ψ2) : ψ(δ) = 0 if and only if 0 = δ and lim

n→∞ψ(δn) > 0 if lim
n→∞ δn > 0.

Theorem 3.1. Let (X, p) be a partial metric space, Also let G be directed graph and
T be a self-mapping on X. Assume that the subsequent assumptions hold:
(a) (X, p) is G-complete,
(b) T (X,G) is non-empty that is there exists u0 ∈ X such that (u0, Tu0) ∈ E(G),
(c) there exists N ⊆ X ×X such that N is Ğ-precomplete and E(G) ⊆ N ,
(d) G is p-G self closed and TG-Transitive,
(e) T is either G-continuous or G is p-G self-closed,
(f) G is weakly connected,
(g) T is generalized contraction, that is,

p(Tu, Tv) ≤ p(u, v)− ψ(p(Tu, Tv))(3.1)

with (u, v) ∈ E(G) and ψ ∈ Ψ. Then T has a fixed point.

Proof. Consider u0 ∈ X in light of the assumption (b), we construct a sequence
{un} ⊂ X defined by un = Tun−1 = T nu0. If there exists some m0 ∈ N0 such that
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um0= um0+1, then um0 is the fixed point of T and hence the proof is completed.
Otherwise assume that un 6= un+1, for every n ∈ N0 , which along with the assump-
tion (c) ensures that (un, un+1) ∈ E(G), for all n ∈ N0. By using assumption (g),
we have

p(Tun−1, Tun) ≤ p(un−1, un)− ψ(p(Tun−1, Tun))(3.2)

which implies

p(un, un+1) = p(Tun−1, Tun) ≤ p(Tun−1, Tun)(3.3)

that is, {p(un, un+1)} is a non-decreasing sequence of positive real numbers bounded
below by 0. So there exists j ≥ 0 such that lim

n→∞p(un, un+1) = j. Now we show that

j = 0. Assume the contrary that j > 0. Applying limit on (1) we obtain,

j ≤ j − lim inf
n→∞ ψ(p(un, un+1));(3.4)

which is a contradiction due to (Ψ2). So, we have

lim
n→∞p(un, un+1) = 0.(3.5)

Also, the relation

dp(un, un+1) = 2p(un, un+1)− p(un, un)− p(un+1, un+1)

≤ 2p(un, un+1),

holds, which after applying limit and using (4) gives, lim
n→∞dp(un, un+1) = 0.

Next, assuming that sequence {un} is a Cauchy sequence in (N, dp). If possible,
{un} is not a Cauchy sequence then for some small positive number ε > 0 and a
smallest integer nk there exist two subsequences, {umk

} and {unk
} of {un} such that

nk > mk > k and dp(umk
, unk

) ≥ ε.(3.6)

Since, dp(u, v) ≤ 2p(u, v), for all u, v ∈ X, so in view of equation (3.6), we have

nk > mk > kp(umk
, unk

) ≥ ε/2 and p(umk
, unk

) ≥ ε/2.(3.7)

. By using triangular inequality, we have

ε/2 ≤ p(umk
, unk

) ≤ p(umk
, unk−1) + p(umk−1

, unk
) − p(umk−1, unk−1)

ε/2 < ε/2 + p(unk−1, unk
).

Letting k →∞ in the light of (3.4), we have

lim
k→∞

p(umk
, unk

) = ε/2.(3.8)
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Now using (3.3), (3.6) and (p4) assumption of partial metric, we have

ε/2 ≤ p(umk
, unk

)

ε/2 ≤ p(umk−1, unk−1)

ε/2 ≤ p(umk−1, umk
) + p(umk

, unk−1) − p(umk
, unk

)

ε/2 < p(umk−1, umk
) + ε/2

Letting k →∞
lim

k→∞
p(umk−1, unk−1) = ε/2.

By using T -transitivity assumption, we have p(umk−1, unk−1) ∈ E(G), therefore
(3.1) implies that

p(umk
, unk

) ≤ p(umk−1, unk−1)− ψ(p(umk
, unk

)).

Now applying limit k →∞ in the light of (3.7) and (3.8), we have

ε/2 ≤ ε/2 − lim
k→∞

inf ψ(p(umk
, unk

)

which is a contradiction, hence sequence {un} is an edge preserving Cauchy sequence
in (N, dp). The precompleteness of N in X assures existence of a point u* ∈ X such
that

lim
n→∞un = u*, that is, lim

n→∞p(un, u*) = p(u*, u*) =⇒ lim
n→∞dp(un, u∗) = 0

Again, from Lemma 2.1, we have

lim
n→∞p(u*, u*) = lim

n→∞p(un, u*) = lim
m,n→∞p(um, un).

As T is continuous, implies that as {un} → u∗ and (un, un+1) ∈ E(G) for all n ∈ N0

lim
n→∞Tun = lim

n→∞un+1 = Tu*,

Thus, uniqueness of the limit implies that

Tu* = u*.

Alternatively, if E(G) is p-selfclosed then for any edge preserving sequence {un} in
N with un → u*, there exists a subsequence { unk

} of { un } such that [unk
, u*] ∈

E(G), for all k ∈ N0. Now in view of assumption (e) with u = unk
and w = u*, we

obtain

p(Tunk
, Tu*) ≤ p(unk

, u*)− ψ(p(Tunk
, Tu*)

≤ p(unk
, u*).
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Passing the limit n → ∞ and using Lemma 2.2, we get p(u*, Tu*)) ≤ 0, thereby
yielding u* = Tu*. This completes the proof. ¤

Next we present a theorem which ensures the uniqueness of the fixed point.

Theorem 3.2. On adding the following assumption, to the assumptions of Theorem
3.1
(h) if T (X) is p-G-connected.
Then T has a unique fixed point.

Proof. Owing to Theorem 3.1, it is assured that at least one fixed point of T exists.
Suppose, that T has two fixed points, say u, u* ∈ X, then we have u = Tu and
u* = Tu*. Our claim is that u = u* as u, u* ∈ T (X) ⊂ N , so condition (h) ensures
that there exists a path, say {v0, v1, v2, ..., vk} ⊂ X of finite length k in E(G) from
u → u*, where v0 = u and vk = u*.
Henceforth

[vi, vi+1] ∈ E(G) for each 0 ≤ i ≤ k − 1(3.9)

Define two constant sequences {v0
n = u} and {v∗n = u*} ,then we have

Tv0
n = Tu = u and Tvk

n = Tu* = u*, for all n ∈ N0.

Also put

vi
0 = vi for each 0 ≤ i ≤ k(3.10)

and define sequences {v1
n}, {v2

n}, ..., {vk−1
n } by

vi
n+1 = Tvi

n, for all n ∈ N0 and for each (1 ≤ i ≤ k − 1)
Hence

vi
n+1 = Tvi

n for all n ∈ N0 and for each 0 ≤ i ≤ k.

Next we prove that

[vi
n, vi+1

n ] ∈ E(G) for all n ∈ N0 for each 0 ≤ i ≤ k − 1.

In the light of (3.9) and (3.10), we obtain [vi
0, v

i+1
0 ] ∈ E(G) and furthermore p-G-

closedness of G implies that

[vi
0, vi+1

0 ] ∈ E(G), for each 0 ≤ i ≤ k − 1.

Now, for all values of n ∈ N0 and for each 0 ≤ i ≤ k − 1 define βi
n = p(v1

n, vi+1
n ).

Our claim is that

lim
n→∞βi

n = 0,
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Let us assume the contrary that lim
n→∞βi

n = β > 0. Since [vi
0, v

i+1
0 ] ∈ E(G), either

[vi
0, v

i+1
0 ] ∈ E(G) or [vi+1

0 , vi
0] ∈ E(G) (and are distinct) for all n ∈ N0 and for each

0 ≤ i ≤ j − 1, so (3.1) gives

p (vi
n, vi+1

n ) ≤ p (v1
n, vi+1

n ) − ψ(p (vi
n , vi+1

n )),

or

p (vi
n+1 , vi+1

n+1) ≤ p (vi
n, vi+1

n ) − ψ(p (vi
n+1, vi+1

n+1)),

by applying limit, it gives

β ≤ β − lim
n→∞ inf ψ (p(vi

n+1, vi+1
n+1));

which is a contradiction . Hence lim
n→∞βi

n = 0.
Next,we have

p(u, u*) = p (v0
n, vk

n)),

≤
j−1∑

i=0

p(vi
n, vi+1

n ) −
j−1∑

i=1

p (vi
n, vi+1

n ),

≤
j−1∑

i=0

p (vi
n, vi+1

n ),

=
j−1∑

i=0

βi
n → 0, (as n →∞).

Hence (by Ψ1 and Ψ2) u = u* and this completes the proof. ¤

Corollary 3.3. The conclusion of Theorem 3.2 remains true if the condition (h) is
replaced by either of the following conditions:
(h*) G is complete.
(h**) E(G) is Ğ- directed.

Proof. If (h*) is valid , then any u1, u2 ∈ T (X), we have (u1, u2) ∈
∗
G ⊆ G (by

condition (c)), that is., {u1, u2} is a path, length of which is 1 in E(G) from u1 to u2.
Hence, condition (h) of Theorem 3.2 is satisfied and the result is inferred by Theorem
3.2. Further, if condition (h * *) holds, then, for each u1, u2 ∈ E(G), there exists
u3 ∈ N such that (u1, u3) and (u2, u3) ∈ E(G). This concludes that there exists a
path of length 2 (say u1, u3, u2) ∈ E(G) from u1 to u2. Hence, again by Theorem
3.2, the result follows. ¤
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Example 3.4. Let X = [0, 5) with partial metric p : X × X → [0,∞) defined by
p(u, v) = max{u, v}, for all u, v ∈ X. Define a graph G such that

E(G) = {(u, v) : p(u, u) = p(u, v) if u = max{u, v}}
Clearly, (X, dp) is a complete metric space and therefore (X, p) too. Define T :
[0, 5) → [0, 5) such that

Tu =
u

4

Then, continuity of T imply Ğ-continuity. Also, it is trivial to prove conditions (a)

and (b). Furthermore, let us define ψ : [0,∞) → [0,∞) as ψ(α) =
5α

8
, for all α ∈

[0,∞).
For any u, v ∈ X such that (u, v) ∈ E(G), we have

p(Tu, Tv) =
u

4
≤ p(u, u)− ψ(p(Tu, Tv))

= u−
(

5
8

)(
u

4

)
,

=
29u

32
Thus, conditions of Theorem 3.1 are fulfilled. Hence, T has u = 0 as fixed point.
Further as X is G-complete then in the light of Corollary 3.3, we have that 0 is
unique fixed point of T .

In light of the fact that every metric is also a partial metric, we can conclude the
following result:

Corollary 3.5. Let (X, d) be a metric space endowed with graph G and T be a self
mapping on X. Considering the following results hold true:
(a) for (u0, Tu0) ∈ G there exists u0 ∈ X,
(b) G is T -closed and locally T -transitive,
(c) there exists N ⊆ X such that N is Ğ-precomplete and T (X) ⊆ N ,
(d) T satisfies the following generalized contraction,

d(T (u), T (v)) ≤ d(u, v) − ψ (d (T (u), T (v)),

for all u, v ∈ X with (u, v) ∈ Ğ and ψ ∈ Ψ;
(e) T is Ğ-continuous or Ğ is d-self closed.
Then T has a fixed point and it is unique if T (X) is Ğ-connected.
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Remark 3.6. The conclusion of Theorem 3.1 remains true if the condition (d) is
replaced by the following condition:
(d*) T is weak contraction, that is,

d(Tu, Tv) ≤ d(u, v)− ψ(d(u, v))

for all u, v ∈ X with (u, v) ∈ ∼
G and ψ ∈ Ψ.

Corollary 3.7. Let (X, d) be metric space endowed with a graph G and self mapping
T . Assume that the following conditions are fulfilled:
(a) there exists u0 ∈ X such that (u0, Tu0) ∈ E(G);
(b) G is T -closed and locally T -transitive;
(c) there exists N ⊂ X such that N is Ğ-precomplete and T (X) ⊂ N ;
(d) there exists w ∈ [0, 1) such that

d(Tu, Tv) ≤ w d(u, v),

for all u, v ∈ X with (u, v) ∈ Ğ;
(e) T is Ğ -continuous or Ğ is increasing and d -self closed.
Then T has a fixed point and it is unique if T (X) is Ğ-connected.

4. An Application

In this section, we discuss the existence of a solution for the linear integral equa-
tions.

The theory of integral equations are nowadays a burning topic of research due
to the its large applications in many branches of mathematical sciences. The main
motivation behind this is due to the sharp rise of the subject integral calculus itself
and of having extensive utilizations in various domains of mathematical sciences.
In qualitative sciences, mostly problems are modeled as different kind of differen-
tial/integral equations.

Further, fixed point theory is a potent analytical tool to establish the solution of
nearly all problems modeled by nonlinear relations by proving existence and unique-
ness. Due to its applications, fixed point theory is highly appreciated and explored.
In fact, the theory can be applied in many spaces, such as metric, Hilbert, Banach,
and Sobolev etc. This feature of allowing operations in different spaces makes fixed
point theory a valuable tool in studying numerous problems of practical sciences
structured as differential and integral equations.
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Now we study the condition that suffice for the existence of solution of the fol-
lowing integral equation in the partial metric setup endowed with graph:

u(s) =
∫ s

0
K(s, η, u(η))dη, s ∈ ω = [0, S], S > 0,(4.1)

where, K : ω × ω × R→ R is continuous.
Here, we have taken partial metric space X = C(ω,R) into consideration. The space
of all continuous functions from ω → R, with partial metric p on X defined as

p(f, g) = max{sup
s∈ω

|f(s)|, sup
s∈ω

|g(s)|}.

Also consider α : R× R→ R a function with α(s, t) = 0 iff s = t and
α (s, t) ≤ 0 and α (s, w) ≤ 0 =⇒ α (t, w) ≤ 0.

Theorem 4.1. Consider that the conditions mentioned below hold true:
(A1) there exists u0 ∈ X such that

α

(
u0(s),

∫ s

0
K(s, η, u0(η))dη

)
≤ 0;

(A2) for all u1, u2 ∈ X and s ∈ ω

α(u1, u2) ≤ 0 =⇒ α

(∫ s

0
K(s, η, u1(η))dη,

∫ s

0
K(s, η, u2(η))dη

)
≤ 0;

(A3) for each u ∈ X and s, η ∈ ω, there exists a number z ∈ [0, 1) such that∫ s

0
K(s, η, u(η))dη ≤ z u(s)

Then (4.1) has a solution, say u∗ ∈ X.

Proof. Define a graph G on X such that

(u, v) ∈ G ⇐⇒ α(u1(s), u2(s)) ≤ 0 for all s ∈ ψ.

Also, define T : X → X by

Tu(s) =
∫ s

0
K(s, η, u(η))dη.

Then by condition (A1), there exists u0, such that (u0, Tu0) ∈ G. Now suppose
(u1, u2) ∈ G for some u1, u2 ∈ X , that is α(u1(s), u2(s)) ≤ 0, for all s ∈ ψ. Then
owing to condition (A2), we get

α(u1(s), u2(s)) ≤ 0 =⇒ α

(∫ s

0
K(s, η, u1(η))dη,

∫ s

0
K(s, η, u2(η))dη

)
≤ 0;

=⇒ α((u1, u2)) ≤ 0

=⇒ (Tu1, Tu2) ∈ G,
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that is G is T -closed. Also for (u1, u2) ∈ Ğ , that is α(u1(s), u2(s)) ≤ 0, for all s ∈ ψ,
we have p(Tu1, Tu2)

= max{Sup
s∈ψ

(Tu1)s, Sup
s∈ψ

(Tu2)s}

= max{Sup
s∈ψ

∫ s

0
K(s, η, u1(η))dη, Sup

s∈ψ

∫ s

0
K(s, η, u2(η))dη}

≤ max{Sup
s∈ψ

z u1(s), Sup
s∈ψ

z u2(s)}

= z max{Sup
s∈ψ

u1(s), Sup
s∈ψ

u2(s)}

= z p(u1, u2)

Define ψ : [0,∞) → [0,∞) by ψ(s) = (1− z) s, z ∈ [0, 1). It is obvious that ψ ∈ Ψ.
Now using it in above inequality, we obtain,

p(Tu1, Tu2) ≤ p(u1, u2)− ψ(p (p(u1, u2))

= p (u1, u2)− ψp (Tu1, Tu2)

Thus all the hypothesis of Theorem 3.1 are satisfied, so we conclude that (4.1) has
a solution u∗ ∈ X. ¤

Conclusion

In this work, fixed point results for non-linear contraction are proved for a con-
tractive mappings on partial metric space in the light of some weaker graph theo-
retic metrical variants. Further, we present non-trivial example vindicating that the
claims are new and original. Indeed, we present variant of prominent recent results
on the graphical metric settings. In addition, to annotate the utility of such newly
obtained results, we solve the linear integral equation. Thus, these findings supply
yet another view on fixed point results with some new applications.
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