DOI QR코드

DOI QR Code

Accelerated Thermal Aging Test for Predicting Lifespan of Urethane-Based Elastomer Potting Compound

  • Min-Jun Gim (Chemical Materials R&D Center, Korea Automotive Technology Institute) ;
  • Jae-Hyeon Lee (Chemical Materials R&D Center, Korea Automotive Technology Institute) ;
  • Seok-Hu Bae (Chemical Materials R&D Center, Korea Automotive Technology Institute) ;
  • Jung-Hwan Yoon (Chemical Materials R&D Center, Korea Automotive Technology Institute) ;
  • Ju-Ho Yun (Chemical Materials R&D Center, Korea Automotive Technology Institute)
  • Received : 2024.04.15
  • Accepted : 2024.06.28
  • Published : 2024.06.30

Abstract

In the field of electronic components, the potting material, which is a part of the electronic circuit package, plays a significant role in protecting circuits from the external environment and reducing signal interference among electronic devices during operation. This significantly affects the reliability of the components. Therefore, the accurate prediction and assessment of the lifespan of a material are of paramount importance in the electronics industry. We conducted an accelerated thermal aging evaluation using the Arrhenius technique on elastic potting material developed in-house, focusing on its insulation, waterproofing, and contraction properties. Through a comprehensive analysis of these properties and their interrelations, we confirmed the primary factors influencing molding material failure, as increased hardness is related to aggregation, adhesion, and post-hardening or thermal-aging-induced contraction. Furthermore, when plotting failure times against temperature, we observed that the hardness, adhesive strength, and water absorption rate were the predominant factors up to 120 ℃. Beyond this temperature, the tensile properties were the primary contributing factors. In contrast, the dielectric constant and loss tangent, which are vital for reducing signal interference in electric devices, exhibited positive changes(decreases) with aging and could be excluded as failure factors. Our findings establish valuable correlations between physical properties and techniques for the accurate prediction of failure time, with broad implications for future product lifespans. This study is particularly advantageous for advancing elastic potting materials to satisfy the stringent requirements of reliable environments.

Keywords

Acknowledgement

This research was supported by the Ministry of Trade, Industry, and Energy Grant funded by the Korean Government [Project Number 20016600].

References

  1. F. Hoeft, "Internal combustion engine to electric vehicle retrofitting: potential customer's needs, public perception and business model implications", Transp. Res., 9, 100330 (2021).
  2. R. Casper and E. Sundin, "Electrification in the automotive industry: effects in remanufacturing", J. Remanufacturing, 11, 121 (2020).
  3. F. Arena, G. Pau, and A. Severino, "An overview on the current status and future perspectives of smart cars", Infrastructures, 5, 53 (2020).
  4. A. M. Khan, A. Bacchus, and S. Erwin, "Policy challenges of increasing automation in driving", IATSS Res., 35, 79 (2012).
  5. I. Nastjuk, B. Herrenkind, A. B. Brendel, M. Marrone, and L. M. Kolbe, "What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user perspective", Technol. Forecast. Soc. Chang., 161, 120319 (2020).
  6. S. N. Gladkikh, E. N. Basharina, O. L. Troitskaya, S. P. Kriulina, N. V. Timoshchenko, and I. V. Nikitushkin, "Development and tests of thermally stable potting and impregnating compounds", Polym. Sci. Ser. D, 5, 145 (2012).
  7. H. Ardebili, J. Zhang, and M. G. Pecht, "Encapsulation technologies for electronic applications" William Andrew, 2018.
  8. M. Shtein, R. Nadiv, M. Buzaglo, and O. Regev, "Graphene-based hybrid composites for efficient thermal management of electronic devices", ACS Appl. Mater. Interfaces, 7, 23725 (2015).
  9. C. Hu, W. Zheng, B. Zhao, Y. Fan, H. Li, K. Zheng, and G. Wang, "The effect of thermal and moisture stress on insulation deterioration law of ionic contaminated high-voltage printed circuit board of electronic power conditioner", Energies, 15, 9616 (2022).
  10. R. Kulkarni, M. Soltani, P. Wappler, T. Guenther, K.-P. Fritz, T. Groezinger, and A. Zimmermann, "Reliability study of electronic components on board-level packages encapsulated by thermoset injection molding", J. Manuf. Mater. Process., 4, 26 (2020).
  11. G.-W. Lee, M. Park, J. Kim, J. I. Lee, and H. G. Yoon, "Enhanced thermal conductivity of polymer composites filled with hybrid filler", Compos. Part A, 37, 727 (2006).
  12. Y. Zhou, Y. Yao, C.-Y. Chen, K. Moon, H. Wang, and C.-P. Wong, "The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation", Sci. Rep., 4, 4779 (2014).
  13. E. J. R. Phua, M. Liu, B. Cho, Q. Liu, S. Amini, X. Hu, and C. L. Gan, "Novel high temperature polymeric encapsulation material for extreme environment electronics packaging", Mat. Des., 141, 202 (2018).
  14. R. Bernstein, D. K. Derzon, and K. T. Gillen, "Nylon 6.6 accelerated aging studies: thermal-oxidative degradation and its interaction with hydrolysis", Polym. Degrad. Stab., 88, 480 (2005).
  15. H. S. Lee, J. H. Do, W. Ahn, and C. Kim, "A study on physical properties and life time prediction of ACM rubber for automotive engine gasket", Elastomers Compos., 47, 254 (2012).
  16. M. A. G. Silva, B. S. d. Fonseca, and H. Biscaia, "On estimates of durability of FRP based on accelerated tests", Compos. Struct., 116, 377 (2014).
  17. T. K. Kang, B. I. Choi, C. S. Woo, and W. D. Kim, "Evaluation of the aging life of the rubber pad in power window switch", Elastomers Compos., 54, 351 (2019).
  18. H. S. Das, M. M. Rahman, S. Li, and C. W. Tan, "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review", Renew. Sustain. Energy Rev., 120, 109618 (2020).
  19. S. Kurtz, K. Whitfield, D. Miller, J. Joyce, J. Wohlgemuth, M. Kempe, N. Dhere, N. Bosco, and T. Zgonena, "Evaluation of high-temperature exposure of rack-mounted photovoltaic modules", In Proceedings of the 34th IEEE PVSC., 2399 (2009).
  20. J. Li, Z. Ning, W. Yang, B. Yang, and Y. Zeng, "Hydroxyl-terminated polybutadiene-based polyurethane with self-healing and reprocessing capabilities", ACS Omega, 7, 10156 (2022).
  21. C.-B. Kim and S. Kim, "Study on the properties of flexible polyurethane foam at the aging condition", KIGAS, 16, 123 (2012).
  22. J. A. Hiltz, "Analytical pyrolysis gas chromatography/ mass spectrometry (py-GC/MS) of poly(ether urethane)s, poly(ether urea)s and poly(ether urethane-urea)s", J. Anal. Appl. Pyrol., 113, 248 (2015).
  23. H. Yang, G. Yuan, E. Jiao, K. Wang, W. Diao, Z. Li, K. Wu, and J. Shi, "Low dielectric constant and high thermal stability of liquid crystal epoxy polymers based on functionalized poly(phenylene oxide)", Eur. Polym. J., 198, 112378 (2023).