DOI QR코드

DOI QR Code

Micropropagation of Lobelia chinensis Lour.: Influence of Medium Parameters on Plant Regeneration, Antioxidant Activity, and Secondary Metabolite Accumulation

  • Xinlei Bai (Department of Horticultural Science, Chungbuk National University) ;
  • Han-Sol Lee (Department of Horticultural Science, Chungbuk National University) ;
  • Hosakatte Niranjana Murthy (Department of Horticultural Science, Chungbuk National University) ;
  • Hyuk-Joon Kwon (Food Science R&D Center, Kolmar BNH Co.) ;
  • Soo-Ho Yeon (Food Science R&D Center, Kolmar BNH Co.) ;
  • Jae-Yeong Ju (Food Science R&D Center, Kolmar BNH Co.) ;
  • So-Young Park (Department of Horticultural Science, Chungbuk National University)
  • Received : 2023.10.24
  • Accepted : 2023.11.15
  • Published : 2024.06.01

Abstract

Chinese lobelia (Lobelia chinensis Lour.) is an important medicinal plant that is used in traditional Chinese, Korean, and Japanese medicine. The goal of the current study was to develop an in vitro propagation technique for Lobelia chinensis. We have examined the effects of different media compositions on the regeneration of shoots from nodal cultures of Lobelia chinensis, including Murashige and Skoog (MS), Gamborg (B5), Schenk and Hildebrandt (SH), Woody plant (WPM), Chu (N6), and Nitsch and Nitsch (NLN) media. Similar to this, shoot regeneration was examined using MS medium of double (2.0), full (1.0), half (0.5), and quarter (0.25) strengths. The regeneration of shoots was also examined with additions of 0, 1, 3, 5, and 7% (w/v) sucrose to MS media. For axillary shoot regeneration, full-strength MS medium supplemented with 3% (w/v) sucrose was shown to be the most effective of all the evaluated factors. On this medium, nodal explants optimally regenerated 4.5 shoots per explant and subsequently shoots involved in rooting on the same medium. The regenerated plants possessed abundant phenolics, flavonoids, and DPPH, ABTS, and FRAP antioxidant activities. High performance liquid chromatographic examination (HPLC) of the regenerated plants revealed an accumulation of myricetin and catechin in higher amounts.

Keywords

Acknowledgement

This work was supported by the Industrial Strategic Technology Development Program (Grant number P0018148) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), and partially supported by Kolmar BNH Co., Ltd.

References

  1. Alatar, A.A. 2015. Thidiazuron induced efficient multiplication and ex vitro conservation of Rauvolfia serpentina - a potent antihypertensive drug producing plant. Biotechnol. Biotechnol. Equip. 29:489-497.  https://doi.org/10.1080/13102818.2015.1017535
  2. Bolyard, M. 2018. Regeneration Artemisia abrotanum L. by means of somatic organogenesis. Cell. Dev. Biol. - Plant 54:127-130.  https://doi.org/10.1007/s11627-017-9878-6
  3. Burin, V.M., S.G. Arcari, L.L.F. Costa and A.M.T. Bordignon-Luiz. 2011. Determination of some phenolic compounds in red wine by RP-HPLC: method development and validation. J. Chromatogr. Sci. 49:647-651.  https://doi.org/10.1093/chrsci/49.8.647
  4. Choi, W.H. and I.A. Lee. 2016. The anti-tubercular activity of Melia azedarach L. and Lobelia chinensis Lour. and their potential as effective anti-Mycobacterium tuberculosis candidate agents. Asian Pac. J. Trop. Biomed. 6:830-835.  https://doi.org/10.1016/j.apjtb.2016.08.007
  5. Chu, C.C., C.C. Wang, C.S. Sun, C. Hsu, K.C. Yin and C.V. Bi. 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci. Sin. 18:659-688. 
  6. Cui, X.H., H.N. Murthy, C.H. Wu and K.Y. Paek. 2010. Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell, Tissue Organ Cult. 103:7-14.  https://doi.org/10.1007/s11240-010-9747-z
  7. Dandin, V.S. and H.N. Murthy. 2012. Regeneration of Andrographis paniculata Nees: analysis of genetic fidelity and andrographolide content in micropropagated plants. Afr. J. Biotechnol. 11:1264-1471. 
  8. Dandin, V.S., P.M. Naik, H.N. Murthy, S.Y. Park, E.J. Lee and K.Y. Paek. 2014. Rapid regeneration and analysis of genetic fidelity and scopoletin content of micropropagated plants of Spilanthes oleracea L. J. Horticul. Sci. Biotechnol. 89:79-85.  https://doi.org/10.1080/14620316.2014.11513052
  9. Faisal, M., A.A. Alatar, N. Ahmad, M. Anis and A.K. Hegazy. 2012. An efficient and reproducible method for in vitro clonal multiplication of Rauvolfia tetraphylla L. and evaluation of genetic stability using DNA-based markers. Appl. Biochem. Biotechnol. 168:1739-1752.  https://doi.org/10.1007/s12010-012-9893-3
  10. Faisal, M., A.A. Alatar, M.A. El-Sheikh, E.M. Abdel-Salam and A.A. Qahtan. 2018. Thidiazuron induced in vitro morphogenesis for sustainable supply of genetically true quality plantlets of brahmi. Ind. Crops Prod. 118:173-179.  https://doi.org/10.1016/j.indcrop.2018.03.054
  11. Fedel, D., S. Kintzios, A. Economou, G. Moschoupoulou and H.I. Constantinidou. 2010. Effect of different strength of medium on organogenesis, phenolic accumulation and antioxidant activity of spearmint (Mentha spicata L.). Open Horticul. J. 3:31-35.  https://doi.org/10.2174/1874840601003010031
  12. Gamborg, O.L., R.A. Miller and K. Ojima. 1968. Nutrient requirements of suspension of soybean root cells. Exp. Cell Res. 50:151-158.  https://doi.org/10.1016/0014-4827(68)90403-5
  13. Ganeshpurkar, A. and A. Saluja. 2020. The pharmacological potential of catechin. Indian J. Biochem. Biophys. 57:505-511. 
  14. Harborne, A.J. 1994. Phytochemical methods: A guide to modern techniques of plant analysis. Springer, Dordrecht, The Netherlands.
  15. Hiregoudar, L.V., H.N. Murthy, J.G. Bhat, A. Nayeem, B.P. Hema, E.J. Hahn and K.Y. Paek. 2006. Rapid clonal propagation of Vitex trifolia. Biol. Plant. 50:291-294.  https://doi.org/10.1007/s10535-006-0023-3
  16. Jo, B.G., Y.H. Park, K.H. Kim, S.N. Kim and M.H. Yang. 2021. Simultaneous determination of four marker compounds in Lobelia chinensis Lour. extract by HPLC-PDA. Appl. Sci. 11:12080. 
  17. Kadapatti, S.S. and H.N. Murthy. 2021. Rapid plant regeneration, analysis of genetic fidelity, and neoandrographolide content of micropropagated plants of Adrographis alata (Vahl) Nees. J. Genet. Eng. Biotechnol. 19:20. 
  18. Kuo, P.C., T.L. Hwang, Y.T. Lin, Y.C. Kuo and Y.L. Leu. 2011. Chemical constituents from Lobelia chinensis and their anti-virus and anti-inflammatory bioactivities. Arch. Pharmacol. Res. 34:715-722.  https://doi.org/10.1007/s12272-011-0503-7
  19. Lee, J.D., H.B. Hyun, H. Hyeon, E. Jang, M.H. Ko, W.J. Yoon, Y.M. Ham, Y.H. Jung, H. Choi, E.G. Oh and D. Oh. 2022. Mass proliferation of Hibiscus hamabo adventitious root in an air-lift bioreactor, and the antioxidant and whitening activity of the extract. Korean J. Plant Res. 35:435-444.  https://doi.org/10.7732/KJPR.2022.35.4.435
  20. Li, K.C., Y.L. Ho, G.L. Huang and Y.S. Chang. 2015. Anti-oxidative and anti-inflammatory effects of Lobelia chinensis in vitro and in vivo. Am. J. Chin. Med. 43:269-287.  https://doi.org/10.1142/S0192415X15500184
  21. Li, S. 2016. The Ben Cao Gang Mu, Chinse Edition, 1st ed., University of California Press, Oakland, CA (USA). p. 625. 
  22. Mathe, A., F. Hassan and A.A. Kade. 2015. In vitro micropropagation of medicinal and aromatic plants. In Mathe, A. (ed.), Medicinal and Aromatic Plants of the World, Springer, Dordrecht, pp. 305-336. 
  23. Mazri, M.A., R. Meziani, J.E. Fadile and A. Ezzinbi. 2016. Optimization of medium composition for in vitro shoot proliferation and growth of data palm cv. Mejhoul. 3 Biotech 6:111. 
  24. McCown, B.H. and G. Lloyd. 1981. Woody plant medium (WPM)-A mineral nutrient formulation for microculture of woody plant species. HortScience 16:453. 
  25. Moraes, R.M., A.L. Cerdeira and M.V. Lourenco. 2021. Micropropagation to develop medicinal plants into crops. Molecules 26:1752. 
  26. Munteanu, I.G. and C. Apetrei. 2021. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 22: 3380. 
  27. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  28. Neto, V.B.D.P. and W.C. Otoni. 2003. Carbon sources and their osmotic potential in plant tissue culture: does it matter? Sci. Hrotic. 97: 193-202.  https://doi.org/10.1016/S0304-4238(02)00231-5
  29. Nitsch, J.P. and C. Nitsch. 1969. Haploid plants from pollen grains. Science 163:85-87.  https://doi.org/10.1126/science.163.3862.85
  30. Rezali, N.I., N.J. Sidik, A. Saleh, N.I. Osman and A.M. Adam. 2017. The effects of different strength of MS media in solid and liquid media on in vitro growth of Typhonium flagelliforme. Asian Pac. J. Trop. Biomed. 7:151-156.  https://doi.org/10.1016/j.apjtb.2016.11.019
  31. Santosa, M.H., R. Herzog and W. Voelter. 1986. Antitumor activity of the hot water extract of Lobelia chinensis. Planta Med. 6:555. 
  32. Schenk, R.V. and A.C. Hildebrandt. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50:199-204.  https://doi.org/10.1139/b72-026
  33. Semwal, D.K., R.B. Semwal, S. Combrinck and A. Viljoen. 2016. Myricetin: a dietary molecule with diverse biological activities. Nutrients 8: 90. 
  34. Shinde, S., K.S. Joseph, J.R. Jain, S.H. Monohar and H.N. Murthy. 2016. Efficient in vitro propagation of Artemisia nilagirica var. nilagirica (Indian wormwood) and assessment of genetic fidelity of micropropagated plants. Physiol. Mol. Biol. Plants 22:595-603.  https://doi.org/10.1007/s12298-016-0379-6
  35. Shirin, F., N.S. Parihar and S.N. Shah. 2015. Effect of nutrient media and KNO3 on in vitro plant regeneration of Sarca asoca (Roxb.) Willd. Am. J. Plant Sci. 6:3282-3292.  https://doi.org/10.4236/ajps.2015.619320
  36. Shohael, A.M., D. Chakarabarty, M.B. Ali, K.W. Yu, E.J. Hahn and K.Y. Paek. 2006. Enhancement of eleutherosides production in embryogenic cultures of Eleutherococcus sessiliflorus in response to sucrose-induced osmotic stress. Process Biochem. 41:512-518.  https://doi.org/10.1016/j.procbio.2005.09.005
  37. Sun, W., S. Yan, J. Li, C. Xiong, Y. Shi, L. Wu, L. Xiang, B. Deng, W. Ma and S. Chen. 2017. Study of commercially available Lobelia chinensis products using Bar-HRM technology. Front. Plant Sci. 8: 351. 
  38. Wu, C.H., Y.H. Dewir, E.J. Hahn and K.Y. Paek. 2006. Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. J. Plant Biol. 49:193-199.  https://doi.org/10.1007/BF03030532
  39. Yang, S., T. Shen, L. Zhao, C. Li, Y. Zhang, H. Lou and D. Ren. 2014. Chemical constituents of Lobelia chinensis. Fitoterapia 93:168-174.  https://doi.org/10.1016/j.fitote.2014.01.007
  40. Zhang, L., N. Reddy, C. Khoo, S.R. Koyyalmudi and C.E. Jones. 2018. Antioxidant and immunomodulatory activities and structural characterization of polysaccharides isolated from Lobelia chinensis Lour. Pharmacologia 9:157-168. 
  41. Zhang, X., P. Hu, X. Zhang and X. Li. 2020. Chemical structure of an inulin-type fructan isolated from Lobelia chinensis Lour. with anti-obesity activity on diet-induced mice. Carbohydr. Polym. 240:1163