DOI QR코드

DOI QR Code

Immersive Smart Balance Board with Multiple Feedback

다중 피드백을 지원하는 몰입형 스마트 밸런스 보드

  • 이승용 (동국대학교 컴퓨터.AI학과) ;
  • 이선호 (동국대학교 멀티미디어공학과) ;
  • 박준성 (동국대학교 멀티미디어공학과) ;
  • 신민철 (수인재두뇌과학) ;
  • 윤승현 (동국대학교 AI소프트웨어융합학부)
  • Received : 2024.06.01
  • Accepted : 2024.07.05
  • Published : 2024.07.25

Abstract

Exercises using a Balance Board (BB) are effective in developing balance, strengthening core muscles, and improving physical fitness and concentration. In particular, the Smart Balance Board (SBB), which integrates with various digital content, provides appropriate feedback compared to traditional balance boards, maximizing the effectiveness of the exercise. However, most systems only offer visual and auditory feedback, failing to evaluate the impact on user engagement, interest, and the accuracy of exercise postures. This study proposes an Immersive Smart Balance Board (I-SBB) that utilizes multiple sensors to enable training with various feedback mechanisms and precise postures. The proposed system, based on Arduino, consists of a gyro sensor for measuring the board's posture, a communication module for wired/wireless communication, an infrared sensor to guide the user's foot placement, and a vibration motor for tactile feedback. The board's posture measurements are smoothly corrected using a Kalman Filter, and the multi-sensor data is processed in real-time using FreeRTOS. The proposed I-SBB is shown to be effective in enhancing user concentration and engagement, as well as generating interest, by integrating with diverse content.

밸런스 보드 (Balance Board, BB)를 활용한 운동은 균형 감각 발달, 코어 근육 강화 등 신체 운동 능력 향상과 집중력 증진에 효과적이다. 특히, 다양한 디지털 콘텐츠와 연동되는 스마트 밸런스 보드 (Smart Balance Board, SBB)는 기존 밸런스 보드에 비해 적절한 피드백을 제공하여 운동 효과를 극대화한다. 그러나 대부분의 시스템들은 시/청각적인 피드백만 제공하여 사용자의 운동 몰입도 및 흥미 그리고 운동 자세의 정확성에 미치는 영향을 평가하지 못한다. 본 연구에서는 멀티 센서를 활용하여 다양한 피드백과 정확한 자세로 훈련이 가능한 몰입형 스마트 밸런스 보드 (Imemersive-SBB, I-SBB)를 제안한다. 제안된 시스템은 아두이노 기반으로 보드의 자세을 측정하는 자이로 센서, 유/무선 통신을 위한 통신 모듈, 사용자의 정확한 발 위치를 유도하는 적외선 센서, 촉각 피드백을 위한 진동 모터로 구성되어 있다. 측정된 보드의 자세는 칼만 필터 (Kalman Filter)를 이용하여 부드럽게 보정되고, 멀티 센서 데이터는 FreeRTOS를 활용해 실시간으로 병렬처리된다. 제안된 I-SBB는 다양한 콘텐츠와 연동하여 사용자의 집중도 및 몰입도 향상과 흥미 유발에 효과적임을 보인다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 인공지능융합혁신인재양성사업 연구 결과로 수행되었음 (IITP-2024-RS-2023-00254592).

References

  1. 한은상 and 구민, "요통 호소자의 밸런스보드 운동을 통한 코어 근 발달이 고관절 균형과 통증 척도에 미치는 영향," 한국발육발달학회지, vol. 29, no. 2, pp. 117-122, 2021.
  2. L. J. DiStefano, M. A. Clark, and D. A. Padua, "Evidence supporting balance training in healthy individuals: a systemic review," The Journal of Strength & Conditioning Research, vol. 23, no. 9, pp. 2718-2731, 2009. https://doi.org/10.1519/JSC.0b013e3181c1f7c5
  3. A. Gebel, O. Prieske, D. G. Behm, and U. Granacher, "Effects of balance training on physical fitness in youth and young athletes: a narrative review," Strength & Conditioning Journal, vol. 42, no. 6, pp. 35-44, 2020. https://doi.org/10.1519/SSC.0000000000000548
  4. J. Saraiva, G. Rosa, S. Fernandes, and J. B. Fernandes, "Current trends in balance rehabilitation for stroke survivors: A scoping review of experimental studies," International journal of environmental research and public health, vol. 20, no. 19, p. 6829, 2023.
  5. A. L. Betker, T. Szturm, Z. K. Moussavi, and C. Nett, "Video game-based exercises for balance rehabilitation: a single-subject design," Archives of physical medicine and rehabilitation, vol. 87, no. 8, pp. 1141-1149, 2006. https://doi.org/10.1016/j.apmr.2006.04.010
  6. R. Baranyi, L. Rast, K. Pinter, C. Aigner, D. Hoelbling, and T. Grechenig, "Fruitgrind: Analysis, design and development of a serious game supporting knee rehabilitation using a smartphone attached to a balance board," in 2023 IEEE 11th International Conference on Serious Games and Applications for Health (SeGAH). IEEE, 2023, pp. 1-6.
  7. I. mobinus, "mobinus," 2017, https://www.mobinus.co.kr/main/index.html [Accessed: 2024.06.11].
  8. I. STORNG FREINDS, "Strong friends," 2021, https://www.strongfriends.co.kr/ [Accessed: 2024.06.11].
  9. I. SIA Barboleta, "Barboleta," 2018, https://barboleta.lv/en/home/, [Accessed: 2024.06.12].
  10. R. Barry et al., "Freertos," Internet, Oct, vol. 4, p. 18, 2008.
  11. M. Khodarahmi and V. Maihami, "A review on kalman filter models," Archives of Computational Methods in Engineering, vol. 30, no. 1, pp. 727-747, 2023. https://doi.org/10.1007/s11831-022-09815-7
  12. S. Ogaya, T. Ikezoe, N. Soda, and N. Ichihashi, "Effects of balance training using wobble boards in the elderly," The Journal of Strength & Conditioning Research, vol. 25, no. 9, pp. 2616-2622, 2011. https://doi.org/10.1519/JSC.0b013e31820019cf
  13. H.-C. Hsieh, "Preliminary study of the effect of training with a gaming balance board on balance control in children with cerebral palsy: a randomized controlled trial," American Journal of Physical Medicine & Rehabilitation, vol. 99, no. 2, pp. 142-148, 2020. https://doi.org/10.1097/PHM.0000000000001300
  14. D. Fitzgerald, N. Trakarnratanakul, B. Smyth, and B. Caulfield, "Effects of a wobble board-based therapeutic exergaming system for balance training on dynamic postural stability and intrinsic motivation levels," journal of orthopaedic & sports physical therapy, vol. 40, no. 1, pp. 11-19, 2010. https://doi.org/10.2519/jospt.2010.3121
  15. S. Brain Science Inc., https://www.brainscience.co.kr/.
  16. R. De Ridder, T. Willems, S. De Mits, J. Vanrenterghem, and P. Roosen, "Foot orientation affects muscle activation levels of ankle stabilizers in a single-legged balance board protocol," Human movement science, vol. 33, pp. 419-431, 2014. https://doi.org/10.1016/j.humov.2013.12.008
  17. U. Technologies, "Unity learn karting microgame urp," 2020, https://assetstore.unity.com/packages/templates/unitylearn-karting-microgame-urp-150956description [Accessed: 2024.06.12].
  18. A. Lapusteanu, "Simple 2-player 3D air hockey game developed in unity," 2020, https://github.com/AndreiLapusteanu/3D-AirHockey [Accessed: 2024.06.12].