DOI QR코드

DOI QR Code

Gradient Estimation for Progressive Photon Mapping

점진적 광자 매핑을 위한 기울기 계산 기법

  • Received : 2024.06.15
  • Accepted : 2024.07.05
  • Published : 2024.07.25

Abstract

Progressive photon mapping is a widely adopted rendering technique that conducts a kernel-density estimation on photons progressively generated from lights. Its hyperparameter, which controls the reduction rate of the density estimation, highly affects the quality of its rendering image due to the bias-variance tradeoff of pixel estimates in photon-mapped results. We can minimize the errors of rendered pixel estimates in progressive photon mapping by estimating the optimal parameters based on gradient-based optimization techniques. To this end, we derived the gradients of pixel estimates with respect to the parameters when performing progressive photon mapping and compared our estimated gradients with finite differences to verify estimated gradients. The gradient estimated in this paper can be applied in an online learning algorithm that simultaneously performs progressive photon mapping and parameter optimization in future work.

점진적 광자 매핑 방식은 복잡한 전역 조명 효과를 효율적으로 렌더링할 수 있다. 그러나 샘플이 유한한 경우, 반경 축소비율 변수에 의해 분산과 편향 값이 크게 영향 받는다. 유한한 샘플을 사용한 렌더링 결과의 픽셀 오류 및 기울기를 추정하여 추정된 기울기를 기반으로 반경 축소비율을 결정하는 최적의 매개변수를 학습할 수 있다면, 렌더링 된 이미지의 오류를 줄일 수 있을 것이다. 본 논문에서는 점진적 광자 매핑 방식을 통한 렌더링과 매개변수 학습이 동시에 될 수 있도록 기울기를 추정하고 추정된 기울기를 유한 차분법을 통해 계산된 기울기와 비교하여 검증한다. 본 논문에서 추정된 기울기는 향후 점진적 광자 매핑 방식의 렌더링과 매개변수 추정을 동시에 수행하는 온라인 학습 알고리즘에 적용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

각 장면을 만드는 데 도움을 주신 저자와 3D 장면 저작자 분들께 감사를 표한다: Toshiya Hachisuka (BOX, TORUS) 및 Benedikt Bitterli (C-BOX, WATER). 이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구이다(No. RS-2023-00207939).

References

  1. E. P. Lafortune and Y. D. Willems, "Bi-directional path tracing," in Proceedings of Third International Conference on Computational Graphics and Visualization Techniques (Compugraphics '93), Alvor, Portugal, December 1993, pp. 145-153.
  2. J. T. Kajiya, "The rendering equation," Computer Graphics (SIGGRAPH Proceedings), vol. 20, no. 4, pp. 143-150, Aug. 1986. https://doi.org/10.1145/15886.15902
  3. H. W. Jensen, "Global illumination using photon maps," in Proceedings of the Eurographics Workshop on Rendering Techniques. Springer Vienna, 1996, pp. 21-30.
  4. T. Hachisuka, S. Ogaki, and H. W. Jensen, "Progressive photon mapping," ACM Transactions on Graphics, vol. 27, no. 5, pp. 1-8, 2008.
  5. A. S. Kaplanyan and C. Dachsbacher, "Adaptive progressive photon mapping," ACM Transactions on Graphics, vol. 32, no. 2, pp. 1-13, 2013.
  6. W. Jarosz, D. Nowrouzezahrai, R. Thomas, P.-P. Sloan, and M. Zwicker, "Progressive photon beams," ACM transactions on graphics, vol. 30, no. 6, pp. 1-12, Dec. 2011.
  7. T. Hachisuka and H. W. Jensen, "Stochastic progressive photon mapping," ACM Transactions on Graphics, vol. 28, no. 5, pp. 1-8, 2009. https://doi.org/10.1145/1618452.1618487
  8. I. Georgiev, J. Krivanek, T. Davidovic, and P. Slusallek, "Light transport simulation with vertex connection and merging," ACM Trans. Graph., vol. 31, no. 6, pp. 1-10, nov 2012.
  9. T. Hachisuka, J. Pantaleoni, and H. W. Jensen, "A path space extension for robust light transport simulation," vol. 31, no. 6, pp. 1-10, nov 2012.
  10. T. Hachisuka, W. Jarosz, and H. W. Jensen, "A progressive error estimation framework for photon density estimation," ACM Transactions on Graphics, vol. 29, no. 6, pp. 1-12, 2010.
  11. C. Knaus and M. Zwicker, "Progressive photon mapping: A probabilistic approach," ACM Transactions on Graphics, vol. 30, no. 3, pp. 1-13, 2011.
  12. S. Zhu, Z. Xu, H. W. Jensen, H. Su, and R. Ramamoorthi, "Deep kernel density estimation for photon mapping," Computer Graphics Forum, vol. 39, no. 4, pp. 35-45, 2020.
  13. Z. Lin, S. Li, X. Zeng, C. Zhang, J. Jia, G. Wang, and D. Manocha, "CPPM: chi-squared progressive photon mapping," ACM Transactions on Graphics, vol. 39, no. 6, pp. 1-12, 2020.
  14. K. Perlin, "Improving noise," in Proceedings of the 29th annual conference on Computer graphics and interactive techniques, 2002, pp. 681-682.
  15. W. Jakob, "Mitsuba renderer," 2010, http://www.mitsubarenderer.org.
  16. H. Choi and B. Moon, "Consistent post-reconstruction for progressive photon mapping," Computer graphics forum: journal of the European Association for Computer Graphics, vol. 40, no. 7, pp. 121-130, Oct. 2021.