References
- C. Chen, A. Seff, A. Kornhauser, and J. Xiao, "Deepdriving: Learning affordance for direct perception in autonomous driving," in Proceedings of the IEEE international conference on computer vision, 2015, pp. 2722-2730.
- J. Chen, W. Zhan, and M. Tomizuka, "Autonomous driving motion planning with constrained iterative lqr," IEEE Transactions on Intelligent Vehicles, vol. 4, no. 2, pp. 244-254, 2019. https://doi.org/10.1109/TIV.2019.2904385
- B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, "A survey of motion planning and control techniques for self- driving urban vehicles," IEEE Transactions on intelligent vehicles, vol. 1, no. 1, pp. 33-55, 2016. https://doi.org/10.1109/TIV.2016.2578706
- F. Codevilla, M. Muller, A. Lopez, V. Koltun, and A. Dosovitskiy, "End-to-end driving via conditional imitation learning," in 2018 IEEE international conference on robotics and automation (ICRA). IEEE, 2018, pp. 4693-4700.
- M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,J. Zhang, et al., "End to end learning for self-driving cars," arXiv preprint arXiv:1604.07316, 2016.
- R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
- D. P. Kingma and M. Welling, "Auto-encoding variational bayes," arXiv preprint arXiv:1312.6114, 2013.
- I. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess,A. Pritzel, M. Botvinick, C. Blundell, and A. Lerchner, "Darla: Improving zeroshot transfer in reinforcement learning," in International Conference on Machine Learning. PMLR, 2017, pp. 1480-1490.
- A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley, and A. Shah, "Learning to drive in a day," in 2019 international conference on robotics and automation (ICRA). IEEE, 2019, pp. 8248-8254.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., "An image is worth 16x16 words: Transformers for image recognition at scale," arXiv preprint arXiv:2010.11929, 2020.
- A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, "Carla: An open urban driving simulator," in Conference on robot learning. PMLR, 2017, pp. 1-16.
- D. A. Pomerleau, "Alvinn: An autonomous land vehicle in a neural network," Advances in neural information processing systems, vol. 1, 1988.
- D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, "Dream to control: Learning behaviors by latent imagination," arXiv preprint arXiv:1912.01603, 2019.
- D. Chen, B. Zhou, V. Koltun, and P. Krahenbuhl, "Learning by cheating," in Conference on Robot Learning. PMLR, 2020, pp. 66-75.
- Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and B. Boots, "Agile autonomous driving using end-to-end deep imitation learning," arXiv preprint arXiv:1709.07174, 2017.
- B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Perez, "Deep reinforcement learning for autonomous driving: A survey," IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 4909-4926, 2021.
- L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li, "End-to-end autonomous driving: Challenges and frontiers," arXiv preprint arXiv:2306.16927, 2023.
- V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, "Asynchronous methods for deep reinforcement learning," in International conference on machine learning. PMLR, 2016, pp. 1928- 1937.
- X. Liang, T. Wang, L. Yang, and E. Xing, "Cirl: Controllable imitative reinforcement learning for vision-based self- driving," in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 584-599.
- T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, "Continuous control with deep reinforcement learning," arXiv preprint arXiv:1509.02971, 2015.
- J. Chen, B. Yuan, and M. Tomizuka, "Model-free deep reinforcement learning for urban autonomous driving," in 2019 IEEE intelligent transportation systems conference (ITSC). IEEE, 2019, pp. 2765-2771.
- H. Van Hasselt, A. Guez, and D. Silver, "Deep reinforcement learning with double q-learning," in Proceedings of the AAAI conference on artificial intelligence, vol. 30, no. 1, 2016.
- S. Fujimoto, H. Hoof, and D. Meger, "Addressing function approximation error in actor-critic methods," in International conference on machine learning. PMLR, 2018, pp. 1587- 1596.
- T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor," in International conference on machine learning. PMLR, 2018, pp. 1861-1870.
- E. Kargar and V. Kyrki, "Vision transformer for learning driving policies in complex multi-agent environments," arXiv preprint arXiv:2109.06514, 2021.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., "Human-level control through deep reinforcement learning," nature, vol. 518, no. 7540, pp. 529-533, 2015. https://doi.org/10.1038/nature14236
- N. Xu, B. Tan, and B. Kong, "Autonomous driving in reality with reinforcement learning and image translation," arXiv preprint arXiv:1801.05299, 2018.
- J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy optimization algorithms," arXiv preprint arXiv:1707.06347, 2017.
- Q. Khan, T. Schon, and P. Wenzel, "Latent space reinforcement learning for steering angle prediction," arXiv preprint arXiv:1902.03765, 2019.