DOI QR코드

DOI QR Code

Flexural performances of deep-deck plate slabs: Experimental and numerical approaches

  • Inwook Heo (Urban Safety and Security Research Institute, University of Seoul) ;
  • Sun-Jin Han (Department of Architectural Engineering, Jeonju University) ;
  • Khaliunaa Darkhanbat (Department of Architectural Engineering, University of Seoul) ;
  • Seung-Ho Choi (Department of Fire and Disaster Prevention Engineering, University of Seoul) ;
  • Sung Bae Kim (The Naeun Structural Engineering) ;
  • Kang Su Kim (Department of Architectural Engineering and Smart City Interdisciplinary Major Program, University of Seoul)
  • Received : 2024.01.10
  • Accepted : 2024.07.08
  • Published : 2024.08.10

Abstract

This work presents experimental and numerical investigations on the flexural performances of composite deep-deck plate slabs. Seven deep-deck plate slab specimens with topping concrete were fabricated; the height of the topping slab as well as presence and type of shear connector were set as the main variables to perform bending experiments. The flexural behaviors of the specimens and composite behaviors of the deck plate and concrete were analyzed in detail. The contributions of the deck plate to the flexural stiffness and strength of the slab were identified through finite element (FE) analysis. FE analysis was carried out using the validated FE model by considering the varying bond strengths of the deck plates and concrete, thickness of the deck plate, and types and spacings of the shear connectors. Based on the results, the degree of composite of the deep-deck plate was examined, and a flexural strength equation for the composite deck plate slabs was proposed.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00220019) for Inwook Heo. Also, this research was supported by the Basic Study and Interdisciplinary R&D Foundation Fund of the University of Seoul (2023) for Kang Su Kim.

References

  1. Adam, C.Y. and Milner, H.R. (2012), "Wood-Based prefabricated composite-acting bridge deck", J. Bridge Eng., 17(2), 363-370. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000242.
  2. American Concrete Institute (2017) ACI 318R-19 Building Code Requirements for Structural Concrete and Commentary, Farmington Hills, MI, USA.
  3. American Society of Civil Engineers (1994), Standard for the Structural Design of Composite Slabs and Standard Practice for Construction and Inspection of Composite Slabs, American Society of Civil Engineers, New York, NY.
  4. Arezoomand, Langarudi, P. and Ebrahimnejad, M. (2020), "Numerical study of the behavior of bolted shear connectors in composite slabs with steel deck", Struct., 26, 501-515. https://doi.org/10.1016/j.istruc.2020.04.037.
  5. Choi, S.H., Heo, I., Darkhanbat, K., Choi, S.M. and Kim, K.S. (2022), "Experimental and numerical study on pre-cambered deep deck-plate system", Comput. Concrete, 30(6), 445-453. https://doi.org/10.12989/cac.2022.30.6.445.
  6. Collins, M.P. and Mitchell, D. (1991), Prestressed Concrete Structures, Englewood Cliffs, NY, USA.
  7. Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
  8. Han, S.J., Lee, D.H., Cho, S.H., Ka, S.B. and Kim, K.S. (2016), "Estimation of transfer lengths in precast pretensioned concrete members based on a modified thick-walled cylinder model", Struct. Concrete, 17(1), 52-62. https://doi.org/10.1002/suco.201500049.
  9. Han, S.J., Joo, H.E., Choi, S.H., Heo, I. and Kim, K.S. (2021), "Flexural behavior of prestressed hybrid wide flange beams with hollowed steel webs", Steel Compos. Struct., 38(6), 691-703. https://doi.org/10.12989/scs.2021.38.6.691.
  10. Heo, I., Darkhanbat, K., Han, S.J., Choi, S.H., Jeong, H. and Kim, K.S. (2021), "Experimental and numerical investigations on fire-resistance performance of precast concrete hollow-core slabs", Appl. Sci., 11(23), 11500. https://doi.org/10.3390/app112311500.
  11. Lee, D.H., Han, S.J. and Kim, K.S. (2016), "Dual potential capacity model for reinforced concrete beams subjected to shear", Struct. Concrete, 17(3), 443-456. https://doi.org/10.1002/suco.201500165.
  12. Liu, R., Yang, Y. and Zhou, X. (2018), "Experimental study on fatigue performance of composite beam with steel-plate-concrete composite decks", Construct. Build. Mater., 188, 833-849. https://doi.org/10.1016/j.conbuildmat.2018.08.108.
  13. Liu, Y., Zhang, Q., Bao, Y. and Bu, Y. (2020), "Fatigue behavior of orthotropic composite deck integrating steel and engineered cementitious composite", Eng. Struct., 220, 111017. https://doi.org/10.1016/j.engstruct.2020.111017.
  14. Marimuthu, V., Seetharaman, S., Jayachandran, S.A., Chellappan, A., Bandyopadhyay, T.K. and Dutta, D. (2007), "Experimental studies on composite deck slabs to determine the shear-bond characteristic values of the embossed profiled sheet", J. Construct. Steel Res., 63(6), 791-803. https://doi.org/10.1016/j.jcsr.2006.07.009.
  15. Pan, W.H., Fan, J.S., Nie, J.G., Hu, J.H. and Cui, J.F. (2016), "Experimental study on tensile behavior of wet joints in a prefabricated composite deck system composed of orthotropic steel deck and ultrathin reactive-powder concrete layer", J. Bridge Eng., 21(10), 04016064. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000935.
  16. Park, K.Y., Nam, Y.S., Choi, Y.H., Kim, Y.H. and Choi, S.M. (2013), "Improvement of flexural performance for deep-deck plate using cap plate", J. Kor. Soc. Steel Construct., 25(5), 555-567. https://doi.org/10.7781/kjoss.2013.25.5.555.
  17. Park, M.K., Lee, D.H., Han, S.J. and Kim, K.S. (2019), "Web-Shear capacity of thick precast prestressed hollow-core slab units produced by extrusion method", Int. J. Concrete Struct. Mater., 13(1), 7. https://doi.org/10.1186/s40069-018-0288-x.
  18. Qureshi, J. and Lam, D. (2020), "Experimental investigation of shear connector behaviour in composite beams with metal decking", Steel Compos. Struct, 35(4), 475-494. https://doi.org/10.12989/scs.2020.35.4.475.
  19. Shao, X., Yi, D., Huang, Z., Zhao, H., Chen, B. and Liu, M. (2013), "Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer", J. Bridge Eng., 18(5), 417-428. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000348.
  20. Sirimontree, S., Thongchom, C., Keawsawasvong, S., Nuaklong, P., Jongvivatsakul, P., Dokduea, W. and Farsangi, E.N. (2021), "Experimental study on the behavior of steel-concrete composite decks with different shear span-to-depth ratios", Build., 11(12), 624. https://doi.org/10.3390/buildings11120624.
  21. Smith, M. (2019), ABAQUS/Standard User's Manual, Version 2019, Dassault Systemes Simulia Corp, United States.
  22. Son, D.H., Ahn, H.J., Chung, J.H., Bae, B.I. and Choi, C.S. (2021), "Deflection estimation based on the thermal characteristics of composite deck slabs containing macro-synthetic fibers", Mater., 14(14), 4052. https://doi.org/10.3390/ma14144052.
  23. Son, D.H., Bae, B.I., Lee, M.S., Lee, M.S. and Choi, C.S. (2021), "Flexural strength of composite deck slab with macro synthetic fiber reinforced concrete", Appl. Sci., 11(4), 1662. https://doi.org/10.3390/app11041662.
  24. Walter, R., Olesen, J.F., Stang, H. and Vejrum, T. (2007), "Analysis of an orthotropic deck stiffened with a cement-based overlay", J. Bridge Eng., 12(3), 350-363. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:3(350).
  25. Wang, Z., He, J., Lu, N., Liu, Y., Yin, X. and Xin, H. (2024), "Experimental and numerical investigation on penetrating cracks growth of rib-to-deck welded connections in orthotropic steel bridge decks", Struct., 61, 106058. https://doi.org/10.1016/j.istruc.2024.106058.
  26. Zhao, Q., Huang, G., Xu, C. and Peng, Y. (2021), "Push-Out behavior of short headed stud connectors in steel-ultra high performance concrete composite deck", KSCE J. Civil Eng., 25(7), 2640-2650. https://doi.org/10.1007/s12205-021-1568-6.
  27. Zhu, Z., Yuan, T., Xiang, Z., Huang, Y., Zhou, Y.E. and Shao, X. (2018), "Behavior and fatigue performance of details in an orthotropic steel bridge with UHPC-Deck plate composite system under In-Service traffic flows", J. Bridge Eng., 23(3), 04017142. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001167.
  28. Zou, Y., Qin, F., Zhou, J., Zheng, Z., Huang, Z. and Zhang, Z. (2021), "Shear behavior of a novel bearing-shear connector for prefabricated concrete decks", Construct. Build. Mater., 268, 121090. https://doi.org/10.1016/j.conbuildmat.2020.121090.