DOI QR코드

DOI QR Code

Hysteresis performance of earthquake-damaged resilient RAC shear walls retrofitted with CFRP strips and steel plates

  • Jianwei Zhang (Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education, Beijing University of Technology) ;
  • Siyuan Wang (Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education, Beijing University of Technology) ;
  • Man Zhang (Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education, Beijing University of Technology) ;
  • Yuping Sun (Department of Architecture, Graduate School of Engineering, Kobe University) ;
  • Hongwei Wang (Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education, Beijing University of Technology)
  • Received : 2024.11.16
  • Accepted : 2024.07.22
  • Published : 2024.08.10

Abstract

In this paper, weakly bonded ultra-high-strength steel bars (UHSS) were used as longitudinal reinforcement in recycled aggregate concrete shear walls to achieve resilient performance. The study evaluated the repairability and hysteresis performance of shear walls before and after retrofitting. Quasi-static tests were performed on recycled aggregate concrete (RAC) and steel fiber reinforced recycled aggregate concrete (FRAC) shear walls to investigate the reparability of resilient shear walls when loaded to 1% drift ratio. Results showed that shear walls exhibited drift-hardening properties. The maximum residual drift ratio and residual crack width at 1% drift ratio were 0.107% and 0.01mm, respectively, which were within the repairable limits. Subsequently, shear walls were retrofitted with bonded X-shaped CFRP strips and steel plates wrapped at the bottom and retested. Except for a slight reduction in initial stiffness, earthquake-damaged resilient shear walls retrofitted with a composite method still had satisfactory hysteresis performance. A revised damage assessment index D, has been proposed to assess of damage degree. Moreover, finite-element analysis for the shear wall before and after retrofit retrofitting was established in OpenSees and verified with experimental results. The finite element results and test results were in good agreement. Finally, parametric analysis was performed.

Keywords

Acknowledgement

This research was supported by the Science and Technology Key Project of Beijing Municipal Natural Science Foundation and Beijing Municipal Education Commission (KZ202110005008).

References

  1. ACI Committee 318 (2014), 31814: Building Code Requirements for Structural Concrete and Commentary, M ACI, USA.
  2. Architecture Institute of Japan (2004), Guidelines for Performance Evaluation of Earthquake-Resistant Reinforced Concrete Buildings (Draft), Tokyo.
  3. Balkamou, N. and Papagiannopoulos, G (2024), "Seismic upgrade of an existing reinforced concrete building using steel plate shear walls (SPSW)", J. Appl. Sci., 14(1), 443. https://doi.org/10.3390/app14010443.
  4. Baorong, H. and Zhang, X.D. (2010), Consolidation Test of RC Columns Bound with two kinds of fiber BFRP, International Conference on Civil Engineering in China-Current Practice and Research Report.
  5. Bastani, A., Das, S. and Kenno, S.Y. (2019), "Flexural rehabilitation of steel beam with CFRP and BFRP fabrics-A comparative study", J. Arch. Civil Mech. Eng., 19(3), 871-882. https://doi.org/10.1016/j.acme.2019.04.004.
  6. Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O'Rourke, T. D., Reinhorn, A.M. and Von, Winterfeldt, D. (2003), "A framework to quantitatively assess and enhance the seismic resilience of communities", J. Earthq. Spectra., 19(4), 733-752. https://doi.org/10.1193/1.1623497.
  7. Cardone, D., Flora A., Picione, M.D.L. and Martoccia, A. (2019), "Estimating direct and indirect losses due to earthquake damage in residential RC buildings", J. Soil Dyn. Earthq. Eng., 126, https://doi.org/10.1016/j.soildyn.2019.105801.
  8. Carrillo, J. (2014), "Damage index based on stiffness degradation of low-rise RC walls", J. Earthq. Eng. Struct. Dyn., 44(6), 831-848. https://doi.org/10.1002/eqe.2488.
  9. Chancellor, N.B., Eatherton, M.R., Roke, D.A. and Akbas, T. (2014), "Self-centering seismic lateral force resisting systems: High-performance structures for the city of tomorrow", J. Build., 4(3), 520-548. https://doi.org/10.3390/buildings4030520.
  10. Chen, X.L (2024), "Research on seismic performance of shear wall structure configured with HRB600 grade high strength steel reinforcement", D Chongqing Univ. 2024-07-17.
  11. Choi, C.S., Bae, B.I., Bae, S. and Son, D.H. (2022), "Flexural retrofit of existing reinforced concrete structural walls with various boundary element details under cyclic loading", J. Build. Eng., 52(15), 104468. https://doi.org/10.1016/j.jobe.2022.104468.
  12. Diao, B., Li, S.C. and Ye, Y.H. (2008), "Analysis and experimental study on the cumulative damage of concrete shaped column structures under repeated loading", J. Build. Struct., 1, 57-63. https://doi.org/10.14006/j.jzjgxb.2008.01.009.
  13. Ding, B., Ouyang, L.J., Lu, Z.D. and Chen, W.Z. (2013), "Seismic performance of RC short columns strengthened with BFRP", Appl. Mech. Mater., 351, 1532-1536. https://doi.org/10.4028/www.scientific.net/AMM.351-352.1532.
  14. Du, X.L. and Ou, J.P. (1991), "Seismic damage assessment models for building structures", J. World Earthq. Eng., 3, 52-58.
  15. Erochko, J. and Christopoulos, C. (2011), "Tremblay R, Choi H. residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7-05", J. Struct. Eng., 137(5), 589-599. https://doi.org/10.1061/(ASCE)ST.1943-541X.00002.
  16. FIB (2003), "Displacement-based seismic design of reinforced concrete buildings", M International Federation for Structural Concrete.
  17. Fillipou, F.C., Popov, E.P. and Bertero, V.V. (1983), Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints, Earthquake Engineering Research Center University of California Berkeley, Berkeley, CA.
  18. Gao, D., Zhang, L. and Nokken, M. (2017), "Compressive behavior of steel fiber reinforced recycled coarse aggregate concrete designed with equivalent cubic compressive strength", J. Construct. Build. Mater., 141, 235-244. https://doi.org/10.1016/j.conbuildmat.2017.02.136.
  19. GB 50010 (2010), Code for the Design of Concrete Structures, S Beijing: China Construction Industry Press.
  20. GB 50011 (2010), Code for Seismic Design of Building, China Ministry of Construction. Beijing.
  21. GB/T 17742 (2020), Earthquake intensity table for China. S China Standards Press.
  22. GB/T6170 (2015), Hexagon Nut, Style 1, China Ministry of Construction. Beijing.
  23. Gu, S., Han, R., Li, S., Wu, G. and Zhang, J. (2019), "Seismic performance of precast shear wall of insufficient grouting material strength strengthened with steel plate", Struct., 45, 1322-1332. https://doi.org/10.1016/j.istruc.2022.09.093.
  24. Habibi, O., Khaloo, A. and Abdoos, H. (2021), "Seismic behavior comparison of RC shear walls strengthened using FRP composites and steel elements", J. Scientia Iranica, 28(3), 1167-1181. https://doi.org/10.24200/sci.2020.55328.4170.
  25. Harajli, M.H. (2006), "Axial stress-strain relationship for FRP confined circular and rectangular concrete columns", J. Cement Concrete Compos., 28(10), 938-948. https://doi.org/10.1016/j.cemconcomp.2006.07.005.
  26. Idriss, L.K. and Owais. M. (2024), "Global sensitivity analysis for seismic performance of shear wall with high-strength steel bars and recycled aggregate concrete", J. Construct. Build. Mater., 411, 134498. https://doi.org/10.1016/j.conbuildmat.2023.134498.
  27. JGJ3 (2010), Technical Regulations for Concrete Structures of High-rise Buildings, S Beijing: Ministry of Housing and Urban-Rural Development of the People's Republic of China.
  28. Jiang, L., Zhang, X., Hu, Y. Liu, R. and Jiang, L. (2023), "Experimental study of novel wrapped CFRP-strengthened CFS-to-sheathing screw connections", J. Thin-Wall. Struct., 192. https://doi.org/10.1016/j.tws.2023.111161.
  29. Kammen, D.M. and Sunter, D.A. (2016), "City-integrated renewable energy for urban sustainability", Sci., 352(6288), 922-928. https://doi.org/10.1126/science.aad9302.
  30. Kashani, H.K., Shakiba, M. and Bazli, M. (2023), "The structural response of masonry walls strengthened using prestressed near surface mounted GFRP bars under cyclic loading", Mater. Struct., 56(6). https://doi.org/10.1617/s11527-023-02201-0.
  31. Kim, J.H., Yail, J.K. and Park, H.G. (2024), "Modeling of glass fiber-reinforced polymer-reinforced squat walls under lateral loading", ACI Struct. J., 121(3). https://doi.org/10.14359/51740489.
  32. Li, X., Gao, N., Zhao, J. and Yin, L. (2024), "Study on seismic performance of steel fiber reinforced concrete shear walls with hybrid steel strands and HRB400 bars in the boundary elements", J. Construct. Build. Mater., 430, 136447. https://doi.org/10.1016/j.conbuildmat.2024.136447.
  33. Liang, K., Chen, L.J. and Su, R.K.L. (2024), "Seismic behavior of BFRP bar reinforced shear walls strengthened with ultra-high-performance concrete boundary elements", Eng. Struct., 304, 117697. https://doi.org/10.1016/j.engstruct.2024.117697.
  34. Liu, B.Q., Bai, S.L. and Liu, M. (1997), "Equivalent ductile damage criterion for seismic resistant structures and its sub-structural test verification", J. Earthq. Eng. Vib., 3(7), 8-84.
  35. Liu, J.D. (2015), "Study on the hysteresis model of seismic damaged reinforced concrete frame", Ph.D. Dissertation, Chongqing University.
  36. Liu, X., Xue, H.J. and Lv, P. (2019), "Study on seismic performance of reinforced damaged assembled short-limb shear walls", J. Build. Struct., 6(11). https://doi.org/10.19701/j.jzjg.2019.11.005.
  37. Lu, X., Lu, X., Guan, H. and Ye, L. (2013), "Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes", Earthq. Eng. Struct. Dyn., 42(5), 705-723. https://doi.org/10.1002/eqe.2240.
  38. Lu, X., Mao, Y., Chen, Y. and Liu, J. (2013), "New structural system for earthquake resilient design", J. Earthq. Tsunami., 7(03), 1350013. https://doi.org/10.1142/S1793431113500139.
  39. Mccormick, J., Aburano, H. and Ikenaga, M. (2008), Permissible Residual Deformation Levels for Building Structures Considering Both Safety and Human Elements, World Conference on Earthquake Engineering, Beijing.
  40. Miao, Z.W., Ye, L., Guan. H. and Lu, X. (2011), "Evaluation of modal and traditional pushover analyses in frame-shear-wall structures", Adv. Struct. Eng., 14(5), 815-836. https://doi.org/10.1260/1369-4332.14.5.815.
  41. Niu, D.T. and Ren, L.J. (1996), "Improved two-parameter earthquake damage model for reinforced concrete structures", J. Earthq. Eng. Vi., 4, 44-54.
  42. Nouraldaim, F.A., Yagoub, and Wang, X.X. (2022), Finite Element Analysis of Reinforced Concrete Shear Walls, Proceedings of the 9th International Conference on Civil Engineering, Singapore.
  43. Park, Y.J. and Ang, A.H.S. (1985), "Mechanistic seismic damage model for reinforced concrete", J. Struct. Eng., 111(4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722).
  44. Qazi, S., Michel, L. and Ferrier, E. (2015), "Impact of CFRP partial bonding on the behaviour of short reinforced concrete wall under monotonic lateral forcing", J. Comp. Struct., 128, 251-259. https://doi.org/10.1016/j.compstruct.2015.03.051.
  45. Rahman, M.A. and Sritharan, S. (2006), "An evaluation of force-based design vs. direct displacement-based design of jointed precast post-tensioned wall systems", J. Earthq. Eng. Vib., 5(2), 285-296. https://doi.org/10.1007/s11803-006-0620-3.
  46. Saatcioglu, M. and Razvi, S.R. (1992), "Strength and ductility of confined concrete", J. Struct. Eng., 118(6), 1590-1607. https://doi.org/10.1061/(ASCE)07339445(1992)118:6(1590).
  47. Sakr, M.A., El-Khoriby, S.R., Khalifa, T.M. and Nagib, M.T. (2017), "Modeling of RC shear walls strengthened by FRP composites", J. Struct. Eng. Mech., 61(3), 407-417. https://doi.org/10.12989/sem.2017.61.3.407.
  48. Shabana, I., Farghaly, A.S. and Benmokrane, B. (2023), "Shear stiffness of earthquake-resistant concrete squat walls reinforced with glass fiber-reinforced polymer bars", ACI Struct. J., 120(2). https://doi.org/10.14359/51738345.
  49. Shen, D., Yang, Q. and Huang, C. (2019), "Tests on seismic performance of corroded reinforced concrete shear walls repaired with basalt fiber-reinforced polymers", J. Construct. Build. Mater., 209, 508-521. https://doi.org/10.1016/j.conbuildmat.2019.02.109.
  50. Sun, F.J., Pang, S.H. and Zhang, Z.W. (2020), "Retrofitting seismically damaged steel sections encased concrete composite walls using externally bonded CFRP strips", J. Compos. Structures., 236, 111927. https://doi.org/10.1016/j.compstruct.2020.111927.
  51. Sun, Y.P., Kenji, S. and AKLANAmi (1996), "Determination of Ultimate Strength in Bending of Square Tubular Horizontally Reinforced Concrete Columns" Proceedings of the Japan Concrete Institute. 18(2).
  52. Wu, J., Li, N., Hallegatte, S., Shi, P., Hu, A. and Liu, X. (2012), "Regional indirect economic impact evaluation of the 2008 Wenchuan Earthquake", J. Environ. Earth Sci., 65, 161-172. https://doi.org/10.1007/s12665-011-1078-9.
  53. Xiao, J., Li, J. and Zhang, C. (2005), "Mechanical properties of recycled aggregate concrete under uniaxial loading", J. Cem. Concrete Res., 35(6), 1187-1194. https://doi.org/10.1016/j.cemconres.2004.09.020.
  54. Yagoub, N.F.A. and Wang, X. (2021), Seismic Performance of Self-Centering Structural Shear Walls: A Numerical Study, International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Singapore.
  55. Yagoub, N.F., Wang, X., Dean, A., Moussa, A.M. and Mahdi, E. (2024), "A novel resilient system of self-centering precast reinforced concrete walls with external dampers", J. Build. Eng., 87, 109107. https://doi.org/10.1016/j.jobe.2024.109107.
  56. Yu, H.Y. (2004), Research on Earthquake Damage Model for Reinforced Concrete Structures, Ph.D. Dissertation, Chongqing University.
  57. Zahiri, F., Kheyroddin, A. and Gholhaki, M. (2023), "A study on the seismic behavior of Reinforced Concrete (RC) wall piers strengthened with CFRP sheets: A pushover analysis approach", J. Struct. Eng. Mech., 88(5), 419-437. https://doi.org/10.12989/sem.2023.88.5.419.
  58. Zhang, J., Yang, H., Zhang, M. and Liu, X. (2022), "Experimental study on seismic performance of resilient recycled aggregate concrete shear walls", Struct., 41, 36-50. https://doi.org/10.1016/j.istruc.2022.04.096.
  59. Zhang, J., Liu, X., Liu, J., Zhang, M. and Cao, W. (2023), "Seismic performance and reparability assessment of recycled aggregate concrete columns with ultra-high-strength steel bars", J. Eng. Struct., 277, 115426. https://doi.org/10.1016/j.engstruct.2022.115426.
  60. Zhang, J.W., Zhang, M., Liu, X. and Cao, W.L. (2022), "Experiment and numerical analysis on seismic performance of resilient shear walls using high-strength recycled aggregate concrete", J. Build. Eng., 52, 104477. https://doi.org/10.1016/j.jobe.2022.104477.
  61. Zhang, J.W., Zhao, Y. and Li, X. (2021), "Experimental study on seismic performance of recycled aggregate concrete shear wall with high-strength steel bars", Struct., 33, 1457-1472. https://doi.org/10.1016/j.istruc.2021.05.033.
  62. Zhao, J., Shen, F., Si, C., Sun, Y. and Yin, L. (2020), "Experimental investigation on seismic resistance of RC shear walls with CFRP bars in boundary elements", Int. J. Concrete Struct. Mater., 14(1), 1-20. https://doi.org/10.1186/s40069-019-0377-5.