DOI QR코드

DOI QR Code

Vibrational behavior of porous composite laminated plates using four unknown integral shear deformation theory

  • Hayat Saidi (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Fouad Bourada (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Abdelmoumen Anis Bousahla (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Abdeldjebbar Tounsi (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Firas Ismail Salman Al-Juboori (Faculty of civil Engineering, University of Malaysia Phang)
  • Received : 2022.05.10
  • Accepted : 2024.02.22
  • Published : 2024.08.10

Abstract

In this scientific work, an analytical solution for the dynamic analysis of cross-ply and angle-ply laminated composite plates is proposed. Due to technical issues during the manufacturing of composite materials, porosities and micro-voids can be produced within the composite material samples, which can carry on to a reduction in the density and strength of the materials. In this research, the laminated composite plates are assumed to have new distributions of porosities over the plate cross-section. The structure is modeled using a simple integral shear deformation theory in which the transverse shear deformation effect is included. The governing equations of motion are obtained employing the principle of Hamilton's. The solution is determined via Navier's approach. The Maple program is used to obtain the numerical results. In the numerical examples, the effects of geometry, ratio, modulus ratio, fiber orientation angle, number of layers and porosity parameter on the natural frequencies of symmetric and anti-symmetric laminated composite plates is presented and discussed in detail. Also, the impacts of the kinds of porosity distribution models on the natural frequencies of symmetric and anti-symmetric laminated composite plates are investigated.

Keywords

References

  1. Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
  2. Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A. and Shirazi, A.H. (2021), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Facta Univers. Ser.: Mech. Eng., 19(4), 633-656. https://doi.org/10.22190/FUME201222024A
  3. Adiyaman, G., Birinci, A., Oner, E. and Yaylaci, M. (2016), "A receding contact problem between a functionally graded layer and two homogeneous quarter planes", Acta Mech., 227(6), 1753-1766. https://doi.org/10.1007/s00707-016-1580-y.
  4. Afsharmanesh, B., Ghaheri, A. and Taheri-Behrooz, F. (2014), "Buckling and vibration of laminated composite circular plate on Winkler-type foundation", Steel Compos. Struct. Int. J., 17(1), 1-19. https://doi.org/10.12989/scs.2014.17.1.001.
  5. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geom. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175
  6. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/SCS.2015.19.6.1421.
  7. Akbas, S.D. (2018), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36. https://doi.org/10.12989/sem.2018.66.1.027
  8. Akbas, S.D. (2018), "Thermal post-buckling analysis of a laminated composite beam", Struc. Eng. Mech., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337
  9. Akbas. S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/jacm.2017.21540.1107.
  10. Farokhi, Nejad, A., Bin, Salim, M.Y., Rahimian, Koloor, S.S., Petrik, S., Yahya, M.Y., Abu, Hassan, S. and Mohd, Shah, M.K. (2021), "Hybrid and synthetic FRP composites under different strain rates: A review", Polym., 13(19), 3400. https://doi.org/10.3390/polym13193400.
  11. Almasabha, G. and Al-Mazaidh, R. (2023), "Simple truss model to estimate the shear strength of short links in the Eccentrically Braced Frame (EBF) steel system", Thin-Wall. Struct., 188, 110811. https://doi.org/10.1016/j.tws.2023.110811.
  12. Almasabha, G. and Ho, Chao, S. (2023), "A new reinforcing configuration for achieving high-ductility and high-strength rectangular squat structural walls", Struct. J., 120(1), 253-268. https://doi.org/10.14359/51737144.
  13. Almasabham, G., Muradm Y., Alghossoon, A., Saleh, E. and Tarawneh, A., (2023), "Sustainability of using steel fibers in reinforced concrete deep beams without stirrups", Sustain., 15(6), 4721. https://doi.org/10.3390/su15064721.
  14. Almasabha, G., Tarawneh, A., Saleh, E. and Alajarmeh, O. (2023), "Data-driven flexural stiffness model of FRP-reinforced concrete slender columns", J. Compos. Construc., 26(3), https://doi.org/10.1061/(ASCE)CC.1943-5614.0001218.
  15. Almasabha, G., Al-Shboul, K.F., Ali, Shehadeh, A. and Alshboul, O. (2023), "Machine learning-based models for predicting the shear strength of synthetic fiber reinforced concrete beams without stirrups", Struct., 52, 299-311. https://doi.org/10.1016/j.istruc.2023.03.170.
  16. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
  17. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.
  18. Bachiri, A., Daikh, A. and Tounsi, A. (2022), "On the thermo-elastic response of FG-CNTRC cross-ply laminated plates under temperature loading using a new HSDT", J. Appl. Comput. Mech., 8(4), 1370-1386. https://doi.org/10.22055/jacm.2022.40148.3529.
  19. Baltacioglu, A.K. and Civalek, O. (2018), "Numerical approaches for vibration response of annular and circular composite plates", Steel Compos. Struct. Int. J., 29(6), 755-766. https://doi.org/10.12989/scs.2018.29.6.759.
  20. Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 259, 113223. https://doi.org/10.1016/j.compstruct.2020.113223.
  21. Birinci, A., Adiyaman, G., Yaylaci, M. and Oner, E. (2015), "Analysis of continuous and discontinuous cases of a contact problem using analytical method and FEM", Latin Am. J. Solids Struct., 12(9), 1771-1789. https://doi.org/10.1590/1679-78251574.
  22. Chakraborty, S., Mukhopadhyay, M. and Mohanty, A.R. (2000), "Free vibrational responses of FRP composite plates: Experimental and numerical studies", J. Reinf. Plast. Comp., 19(7), 535-551. https://doi.org/10.1177/073168440001900702.
  23. Chalak, H.D., Chakrabarti, A., Iqbal, M. and Sheikh, A.H. (2013), "Free vibration analysis of laminated soft core sandwich plates", J. Vib. Acoust., 135(1), 1-15. https://doi.org/10.1115/1.4007262.
  24. Chandrasekhar, K., Bhikshma, V. and Bhaskara, Reddy, K. (2022), "Topology optimization of laminated composite plates and shells using optimality criteria", J. Appl. Comput. Mech., 8(2), 405-415. https://doi.org/10.22055/jacm.2019.31296.1858.
  25. Chun, T.C. and Grace, X.G. (2019), "Machine learning for composite materials", Commun. Artif. Intel. Prospect., 9(2), 556-566. https://doi.org/10.1557/mrc.2019.32.
  26. Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geom. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
  27. Dorduncu, M., Kaya, K. and Ergin, O.F. (2020), "Peridynamic analysis of laminated composite plates based on first-order shear deformation theory", Int. J. Appl. Mech., 12(3), 2050031. https://doi.org/10.1142/S1758825120500313.
  28. Ebrahimi, F., Jafari, A. and Barati, M.R., (2017), "Free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position", Arab. J. Sci. Eng., 42(5), 1865-1881. https://doi.org/10.1007/s13369-016-2348-3.
  29. Ghugal, Y.M. and Pawar, M.D. (2011), "Buckling and vibration of plates by hyperbolic shear deformation theory", J. Aerosp. Eng. Technol., 1(1), 1-12. https://doi.org/10.37591/.v1i1-3.724.
  30. Hadji, L., (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
  31. Hadjicharalambous, C., Prymak, O., Loza, K., Buyakov, A., Kulkov, S. and Chatzinikolaidou, M. (2015), "Effect of porosity of alumina and zirconia ceramics toward pre-osteoblast response", Front. Bioeng. Biotech., 3, 1-10. https://doi.org/10.3389/fbioe.2015.00175.
  32. He, C.H., Liu, C., He, J.H., Mohammad-Sedighi, H., Shokri, A. and Gepreel, K.A. (2022), "A fractal model for the internal temperature response of a porous concrete", Appl. Comput. Math., 21(1), 71-77. http://dx.doi.org/10.30546/1683-6154.21.1.2022.71.
  33. Javed, S., Viswanathan, K.K., Izyan, M.N., Aziz, Z.A. and Lee, J.H. (2018), "Free vibration of cross-ply laminated plates based on higher-order shear deformation theory", Steel Compos. Struct. Int. J., 26(4), 473-484. https://doi.org/10.12989/scs.2018.26.4.473.
  34. Jena, S.K., Chakraverty, S., Malikan, M. and Mohammad-Sedighi, H. (2020), "Hygro-magnetic vibration of the single-walled carbon nanotube with nonlinear temperature distribution based on a modified beam theory and nonlocal strain gradient model", Int. J. Appl. Mech., 12(05), 2050054. https://doi.org/10.1142/S1758825120500544.
  35. Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications.
  36. Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Ther. Stresses, 43(1), 1-19. https://doi.org/10.1080/01495739.2019.1673687.
  37. Kumar, R. and Kumar, A. (2023), "Flexural analysis of laminated composite porous plate", Asian J. Civ. Eng., 24(3), 673-692. https://doi.org/10.1007/s42107-022-00523-y.
  38. Lee, S.J. and Kim, H.R. (2013), "FE analysis of laminated composite plates using a higher order shear deformation theory with assumed strains", Latin Am. J. Solids Struct., 10(3), 523-547. https://doi.org/10.1590/S1679-78252013000300005.
  39. Lei, S., Wang, D., Liu, X., Yin, A. and Long, Z., (2023), "Prediction of mechanical properties of composite materials using multimodal fusion learning", Sens. Actuat. A: Phys., 358(16), 114433. https://doi.org/10.1016/j.sna.2023.114433.
  40. Lopes, C.S., Remmers, J.J.C. and Gurdal, Z. (2008), "Influence of porosity on the interlaminar shear strength of fibre-metal laminates", Key Eng. Mater., 383, 35-52. https://doi.org/10.4028/www.scientific.net/KEM.383.35.
  41. Maabreh, M. and Almasabha, G., (2023), "Machine learning regression algorithms for shear strength prediction of SFRC-DBs: Performance evaluation and comparisons", Arab. J. Sci. Eng., 49(4), 4711-4727. https://doi.org/10.1007/s13369-023-08176-y
  42. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  43. Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech, 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
  44. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.
  45. Mehar, K., Panda, S.K., Yuvarajan, D. and Gautam, C. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  46. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geom. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
  47. Khaleel, M., Ahmed, A.A. and Alsharif, A. (2023), "Artificial intelligence in engineering", Br. Res. Artif. Intell., 3(1). https://doi.org/10.47709/brilliance.v3i1.2170.
  48. Noor, A.K. and Burton, W.S. (1990), "Three-dimensional solutions for antisymmetrically laminated anisotropic plates", J. Appl. Mech., 57(1), 182-188. https://doi.org/10.1115/1.2888300.
  49. Oner, E., Sabano, S.B., Yaylaci, E.U., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", J. Appl. Math. Mech, 102(2), e202100287. https://doi.org/10.1002/zamm.202100287.
  50. Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. ttps://doi.org/10.12989/SEM.2015.54.4.607.
  51. Pan, H.G., Wu, Y.S., Zhou, J.N., Fu, Y.M., Liang, X. and Zhao, T. Y. (2021), "Free vibration analysis of a graphene-reinforced porous composite plate with different boundary conditions", Mater., 14(14), 3879. https://doi.org/10.3390/ma14143879.
  52. Panda, S.K. and Singh, B.N. (2013), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Tech., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007.
  53. Rachedi, M.A., Benyoucef, S., Bouhadra, A., BachirBouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geom. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
  54. Reddy, B.S., Reddy, A.R., Kumar, J.S. and Reddy, K.V.K. (2012), "Bending analysis of laminated composite plates using finite element method", Int. J. Eng. Sci. Tech., 4(2), 177-190. https://doi.org/10.4314/ijest.v4i2.14.
  55. Rezaei, A.S. and Saidi, A.R. (2015), "Exact solution for free vibration of thick rectangular plates made of porous materials", Comp. Struct., 134, 1051-1060. https://doi.org/10.1016/j.compstruct.2015.08.125.
  56. Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Comp. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
  57. Sahu, P., Sharma, N. and Panda, S.K. (2020), "Numerical prediction and experimental validation of free vibration responses of hybrid composite (glass/carbon/kevlar) curved panel structure", Comp. Struct., 243, 112073. https://doi.org/10.1016/j.compstruct.2020.112073.
  58. Saidi, H., Sahla, M. and Tounsi, A., (2020), "Natural frequencies of functionally graded plate composed of a mixture of titanium (Ti-6Al-4V) and zirconia (ZrO2)", Proceedings of the 4th International Symposium on Materials and Sustainable Development, Volume 1: Nano-Technology and Advanced Material.
  59. Navaratnam, S., Selvaranjan, K., Jayasooriya, D., Rajeev, P. and Sanjayan, J. (2023), "Applications of natural and synthetic fiber reinforced polymer in infrastructure: A suitability assessment", J. Build. Eng., 66, 105835. https://doi.org/10.1016/j.jobe.2023.105835.
  60. Sayyad, A.S. and Ghugal, Y.M. (2017), "On the free vibration of angle-ply laminated composite and soft core sandwich plates", J. Sandw. Struct. Mater., 19(6), 1-33. https://doi.org/10.1177/1099636216639000.
  61. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
  62. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Ther. Stress, 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  63. Singh, V.K. and Panda, S.K. (2014), "Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels", Thin-Wall. Struct., 85, 341-349. https://doi.org/10.1016/j.tws.2014.09.003.
  64. Sinha, L., Das, D., Nayak, A.N. and Sahu, S.K. (2020), "Experimental and numerical study on free vibration characteristics of laminated composite plate with/without cut-out", Comp. Struct., 256, 113051. https://doi.org/10.1016/j.compstruct.2020.113051.
  65. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3), 195-200. https://doi.org/10.1007/bf01176650.
  66. Thai, C.H., Tran, L.V., Tran, D.T., Nguyen-Thoi, T. and Nguyen-Xuan, H. (2012), "Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method", Appl. Math. Model., 36(11), 5657-5677. https://doi.org/10.1016/j.apm.2012.01.003.
  67. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/CAC.2020.26.1.053.
  68. Timmermann, J.C. and Atheer, L.S. (2020), "Artificial intelligence in engineering and society -Current trends and applications".
  69. Vaghefi, R. (2020), "Three-dimensional temperature-dependent thermo-elastoplastic bending analysis of functionally graded skew plates using a novel meshless approach", Aerosp. Sci. Tech., 104, 105916. https://doi.org/10.1016/j.ast.2020.105916.
  70. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  71. Wang, X. (2017), "Benchmark solutions of the free vibration of simply supported laminated composite plates", Math. Models Eng., 3(2), 98-105. https://doi.org/10.21595/mme.2017.19257.
  72. Xue, Y., Jin, G., Ma, X., Chen, H., Ye, T., Chen, M. and Zhang, Y. (2019), "Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach", Int. J. Mech. Sc., 152, 346-362. https://doi.org/10.1016/j.ijmecsci.2019.01.004.
  73. Yahea, H.T. and Majeed, W.I. (2021), "Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory", Compos. Mater. Eng., 3(3), 179-199. https://doi.org/10.12989/cme.2021.3.3.179.
  74. Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/CAC.2020.25.6.551.
  75. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/SEM.2016.57.6.1143.
  76. Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/ANR.2022.12.4.405.
  77. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
  78. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/SEM.2013.48.2.241.
  79. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/SCS.2022.43.5.661.
  80. Yaylaci, M., Abanoz, M., Yaylaci, E.U. Olmez, H., Sekban, D.M. and Birinci, A. (2022), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., 92(6), 1953-1971. https://doi.org/10.1007/s00419-022-02159-5.
  81. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/CAC.2021.27.3.199.
  82. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A., (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
  83. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., Oner, E., and Birinci, A. (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
  84. Yaylaci, M., Sabano, B.S., Ozdemir, M.E. and Birinci, A. (2022), "Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/SEM.2022.82.3.401.
  85. Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  86. Yuksel. Y.Z. and Akbas, S.D. (2019), "Vibration analysis of a porous laminated composite plate", International Symposium on Innovations in Civil Engineering and Technology (ICIVILTECH), Turkey.
  87. Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/jcamech.2019.291967.448.
  88. Zghal, S. and Dammak, F. (2021), "Vibration characteristics of plates and shells with functionally graded pores imperfections using an enhanced finite shell element", Comput. Math. Appl., 99, 52-72. https://doi.org/10.1016/j.camwa.2021.08.001.
  89. Zhang, J.M., Yang, W.D. and Li, Y. (2021), "Application of artificial intelligence in composite materials", Adv. Mech., 51(4), 865-900. https://doi.org/10.6052/1000-0992-21-019.