DOI QR코드

DOI QR Code

Modeling of truncated nanocompositeconical shell structures for dynamic stability response

  • S.M.R. Allahyari (Department of Mechanical Engineering, Dariun Branch, Islamic Azad University) ;
  • M. Shokravi (Energy Institute of Higher Education, Mehrab High School) ;
  • T.T. Murmy (Faculty of Mechanical Engineering, University of Hongkong)
  • Received : 2024.02.02
  • Accepted : 2024.07.10
  • Published : 2024.08.10

Abstract

This paper deals with the dynamic buckling behavior of truncated conical shells composed of carbon nanotube composites, an important area of study in view of their very wide engineering applications in aerospace industries. In this regard, the effective material properties of the nanocomposite have been computed using the Mori-Tanaka model, which has already been established for such analyses. The motion equations ruling the structure's behavior are derived using first order shear deformation theory, Hamilton's principle, and energy method. This will provide adequate background information on its dynamic response. In an effort to probe the dynamic instability region of the structure, differential quadrature method combined with Bolotin's method will be adopted to tackle the resulting motion equations, which enables efficient and accurate analysis. This work considers the effect of various parameters in the geometrical parameters and the volume fraction of CNTs on the structure's DIR. Specifically, it became clear that increasing the volume fraction of CNTs shifted the frequency range of the DIR to higher values, indicating the significant role of nanocomposite composition regarding structure stability.

Keywords

References

  1. Adibi, M. and Talebkhah, R. (2022), "Seismic performance assessment of the precast concrete buildings using FEMA P-695 methodology", Struct. Eng. Mech., 82(1), 55-67. https://doi.org/10.12989/sem.2022.82.1.055.
  2. Amezcua, H.R. and Ayala, A.G. (2023), "A computationally efficient numerical integration scheme for non-linear planestress/strain FEM applications using one-point constitutive model evaluation", Struct. Eng. Mech., 85(1), 89-104. https://doi.org/10.12989/sem.2023.85.1.089.
  3. Avey, M., Fantuzzi, N. and Sofiyev, A.H. (2023), "Thermoelastic stability of CNT patterned conical shells under thermal loading in the framework of shear deformation theory", Mech. Adv. Mater. Struct., 30(9), 1828-1841. https://doi.org/10.1080/15376494.2022.2045653.
  4. Avey, M., Fantuzzi, N. and Sofiyev, A.H.N. (2022b), "Mathematical modeling and analytical solution of thermoelastic stability problem of functionally graded nanocomposite cylinders within different theories", Math., 10(7), 1081. https://doi.org/10.3390/math10071081.
  5. Avey, M., Sofiyev, A.H. and Kuruoglu, N. (2022a), "Influence of elastic foundations and thermal environments on the thermoelastic buckling of nanocomposite truncated conical shells", Acta Mechanica, 233(2), 685-700. https://doi.org/10.1007/s00707-021-03139-6.
  6. Bagheri, H., Kiani, Y. and Eslami, M.R. (2017), "Free vibration of conical shells with intermediate ring support", Aerosp. Sci. Technol., 69, 321-332. https://doi.org/10.1016/j.ast.2017.06.037.
  7. Cao, J., Du, J., Fan, Q., Yang, J., Bao, C. and Liu, Y. (2024), "Reinforcement for earthquake-damaged glued-laminated timber knee-braced frames with self-tapping screws and CFRP fabric", Eng. Struct., 306, 117787. https://doi.org/10.1016/j.engstruct.2024.117787.
  8. Fu, T., Wang, X. and Rabczuk, T. (2024), "Broadband low-frequency sound insulation of stiffened sandwich PFGM doubly-curved shells with positive, negative and zero Poisson's ratio cellular cores", Aerosp. Sci. Technol., 147, 109049. https://doi.org/10.1016/j.ast.2024.109049.
  9. Gao, Q., Ding, Z. and Liao, W. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269.
  10. Haftchenari, H., Darvizeh, M., Darvizeh, A., Ansari, R. and Sharma, C.B. (2007), "Dynamic analysis of composite cylindrical shells using differential quadrature method (DQM)", Compos. Struct., 78, 292-298. https://doi.org/10.1016/j.compstruct.2005.10.003.
  11. Ke, L. and Martin, R. (2016), "Nonlinear buckling analysis of the conical and cylindrical shells using the SGL strain based reduced order model and the PHC method", Aerosp. Sci. Technol., 55, 103-110. https://doi.org/10.1016/j.ast.2016.05.018.
  12. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  13. Kolahchi, R., Zarei, M.Sh., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  14. Korjakin, A., Rikards, R., Altenbach, H. and Chate, A. (2001), "Free damped vibrations of sandwich shells of revolution", J. Sandw. Struct. Mater., 3, 171-196. https://doi.org/10.1106/LB2E-22L4-7JA6-CAED.
  15. Lair, J., Hui, D., Sofiyev, A.H., Gribniak, V. and Turan, F. (2019), "On the parametric instability of multilayered conical shells using the FOSDT", Steel Compos. Struct., 31(3), 277-290. https://doi.org/10.12989/scs.2019.31.3.277.
  16. Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z. and Wang, Z. (2022), "Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load", Marine Struct., 84, 103198. https://doi.org/10.1016/j.marstruc.2022.103198.
  17. Parand, A.A. and Alibeigloo, A. (2017), "Static and vibration analysis of sandwich cylindrical shell with functionally graded core and viscoelastic interface using DQM", Compos. Part B: Eng., 126, 1-16. https://doi.org/10.1016/j.compositesb.2017.05.071.
  18. Qian, W., Zhang, W., Wu, S., Hu, Y., Zhang, X., Hu, Q. and Tu, S. (2024), "In situ X-ray imaging and numerical modeling of damage accumulation in C/SiC composites at temperatures up to 1200 ℃", J. Mater. Sci. Technol., 197, 65-77. https://doi.org/10.1016/j.jmst.2024.01.069.
  19. Safarpour, M., Rahim, A.R. and Alibeigloo, A. (2019), "Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM", Mech. Bas. Des. Struct. Mach., 48, 496-524. https://doi.org/10.1080/15397734.2019.1646137.
  20. Sofiyev, A.H. (2015), "Influences of shear stresses on the dynamic instability of exponentially graded sandwich cylindrical shells", Compos. Part B-Eng., 77, 349-362. https://doi.org/10.1016/j.compositesb.2015.03.040.
  21. Sofiyev, A.H. (2017), "Influences of shear deformations and material gradient on the linear parametric instability of laminated orthotropic conical shells", Compos. Struct., 225, 111156. https://doi.org/10.1016/j.compstruct.2019.111156.
  22. Sofiyev, A.H. and Kuruoglu, N. (2016), "Domains of dynamic instability of FGM conical shells under time dependent periodic loads", Compos. Struct., 136, 139-148. https://doi.org/10.1016/j.compstruct.2015.09.060.
  23. Sofiyev, A.H. and Kuruoglu, N. (2022), "Buckling analysis of shear deformable composite conical shells reinforced by CNTs subjected to combined loading on the two-parameter elastic foundation", Def. Technol., 18(2), 205-218. https://doi.org/10.1016/j.dt.2020.12.007.
  24. Sofiyev, A.H. and Pancar, E.B. (2017), "The effect of heterogeneity on the parametric instability of axially excited orthotropic conical shells", Thin Wall. Struct., 115, 240-246. https://doi.org/10.1016/j.tws.2017.02.023.
  25. Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., 25(5), 581-591. https://doi.org/10.12989/scs.2017.25.5.581.
  26. Su, F., He, X., Dai, M., Yang, J., Hamanaka, A., Yu, Y. and Li, J. (2023b), "Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions", Energy, 285, 129309. https://doi.org/10.1016/j.energy.2023.129309.
  27. Su, Y., Iyela, P.M., Zhu, J., Chao, X., Kang, S. and Long, X. (2024), "A Voronoi-based gaussian smoothing algorithm for efficiently generating RVEs of multi-phase composites with graded aggregates and random pores", Mater. Des., 244, 113159. https://doi.org/10.1016/j.matdes.2024.113159.
  28. Su, Y., Shen, Z., Long, X., Chen, C., Qi, L. and Chao, X. (2023a), "Gaussian filtering method of evaluating the elastic/elastoplastic properties of sintered nanocomposites with quasi-continuous volume distribution", Mater. Sci. Eng.: A, 872, 145001. https://doi.org/10.1016/j.msea.2023.145001.
  29. Taha, M. and Essam, M. (2013), "Stability behavior and free vibration of tapered columns with elastic end restraints using the DQM method", Ain Shams Eng. J., 4, 515-521. https://doi.org/10.1016/j.asej.2012.10.005.
  30. Tan, X., Zhu, Sh., Wang, B., Yao, K., Chen, Sh., Xu, P., Wang, L. and Sun, Y. (2020), "Mechanical response of negative stiffness truncated-conical shell systems: experiment, numerical simulation and empirical model", Compos. Part B: Eng., 188, 107898. https://doi.org/10.1016/j.compositesb.2020.107898.
  31. Tayebi, M.S., Salami, S.J. and Tavakolian, M. (2023), "Free vibration analysis of FG composite plates reinforced with GPLs in thermal environment using full layerwise FEM", Struct. Eng. Mech., 85(4), 445-459. https://doi.org/10.12989/sem.2023.85.4.445.
  32. Tong, L. (1994), "Free vibration of laminated conical shells including transverse shear deformation", Int. J. Solid Struct., 31, 443-456. https://doi.org/10.1016/j.compositesb.2020.107898.
  33. Wang, W., Jin, Y., Mu, Y., Zhang, M. and Du, J. (2023), "A novel tubular structure with negative Poisson's ratio based on gyroid-type triply periodic minimal surfaces", Virt. Phys. Prototyp., 18(1), e2203701. https://doi.org/10.1080/17452759.2023.2203701.
  34. Wilkins, D.J., Bert, C.W. and Egle, D.M. (1970), "Free vibrations of orthotropic sandwich conical shells with various boundary conditions", J. Sound Vib., 13, 211-228. https://doi.org/10.1016/S0022-460X(70)81175-0.
  35. Xiang, X., Guoyong, J., Wanyou, L. and Zhigang, L. (2014), "A numerical solution for vibration analysis of composite laminated conical, cylindrical shell and annular plate structures", Compos. Struct., 111, 20-30. https://doi.org/10.1016/j.compstruct.2013.12.019.
  36. Youcef, K. and Aouni, A.L. (2016), "Numerical model to analyze the aerodynamic behavior of a combined conical-cylindrical shell", Aerosp. Sci. Technol., 58, 601-617. https://doi.org/10.1016/j.ast.2016.09.019.
  37. Zhang, C., Khorshidi, H., Najafi, E. and Ghasemi, M. (2023a), "Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review", J. Clean. Prod., 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390.
  38. Zhang, P., Du, Ch., Zhao, W. and Zhang, D. (2022), "Hydraulic fracture simulation of concrete using the SBFEM-FVM model", Struct. Eng. Mech., 80(5), 553-562. https://doi.org/10.12989/sem.2021.80.5.553.
  39. Zhang, W., Kang, S., Liu, X., Lin, B. and Huang, Y. (2023b), "Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate", J. Build. Eng., 71, 106522. https://doi.org/10.1016/j.jobe.2023.106522.
  40. Zhang, X., Wang, S., Liu, H., Cui, J., Liu, C. and Meng, X. (2024), "Assessing the impact of inertial load on the buckling behavior of piles with large slenderness ratios in liquefiable deposits", Soil Dyn. Earthq. Eng., 176, 108322. https://doi.org/10.1016/j.soildyn.2023.108322.
  41. Zhou, Y., Song, Y., Zhao, S., Li, X., Shao, L., Yan, H. and Ding, S. (2024), "A comprehensive aerodynamic-thermal-mechanical design method for fast response turbocharger applied in aviation piston engines", Propuls. Pow. Res., 13(2), 145-165. https://doi.org/10.1016/j.jppr.2024.04.001.