참고문헌
- Aghamohammadi, M., Sorokin, V. and Mace, B. (2022), "Dynamic analysis of the response of Duffing-type oscillators subject to interacting parametric and external excitations", Nonlin. Dyn., 107, 99-120. https://doi.org/10.1007/s11071-021-06972-5.
- Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
- Avramov, K., Uspensky, B., Sakhno, N. and Nikonov, O. (2022), "Transient response of functionally graded carbon nanotubes reinforced composite conical shell with ring-stiffener under the action of impact loads", Eur. J. Mech.-A/Solid., 91, 104429. https://doi.org/10.1016/j.euromechsol.2021.104429.
- Azizi, A., Khalili, S.M.R. and Fard, K.M. (2019), "Low-velocity impact response of sandwich conical shell with agglomerated single-walled carbon nanotubes-reinforced face sheets considering structural damping", J. Sandw. Struct. Mater., 21, 1481-1519. https://doi.org/10.1177/1099636217715807.
- Banerjee, R., Rout, M., Karmakar, A. and Bose, D. (2023), "Low-velocity impact response of hybrid CNTs reinforced conical shell under hygrothermal conditions", Fiber. Polym., 24, 2849-2866. https://doi.org/10.1007/s12221-023-00262-0,
- Barati, M.R. and Shahverdi, H. (2017), "Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory", Compos. Struct., 176, 982-995. https://doi.org/10.1016/j.compstruct.2017.06.004.
- Chan, D.Q., Long, V.D. and Duc, N.D. (2019), "Nonlinear buckling and postbuckling of FGM shear-deformable truncated conical shells reinforced by FGM stiffeners", Mech. Compos. Mater., 54, 745-764. https://doi.org/10.1007/s11029-019-9780-x.
- Chan, D.Q., Nguyen, P.D., Quang, V.D., Anh, V.T.T. and Duc, N.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., 31, 243-259 https://doi.org/10.12989/scs.2019.31.3.243.
- Do, V.N.V. and Lee, C.H. (2021), "Isogeometric analysis for buckling and postbuckling of graphene platelet reinforced composite plates in thermal environments", Eng. Struct., 244, 112746. https://doi.org/10.1016/j.engstruct.2021.112746.
- Dong, Y.H., Li, X.Y., Gao, K., Li, Y.H. and Yang, J. (2020), "Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment", Nonlin. Dyn., 99, 981-1000. https://doi.org/10.1007/s11071-019-05297-8.
- Duc, N.D., Cong, P.H., Tuan, N.D. and Thanh, N.V. (2017), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin Wall. Struct., 115, 300-310. https://doi.org/10.1016/j.tws.2017.02.016.
- Duc, N.D., Kim, S.E. and Chan, D.Q. (2018), "Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT", J. Therm. Stress., 41(3), 331-365. https://doi.org/10.1080/01495739.2017.1398623.
- Ellali, M., Bouazza, M. and Amara, K. (2022), "Thermal buckling of a sandwich beam attached with piezoelectric layers via the shear deformation theory", Arch. Appl. Mech., 92, 657-665. https://doi.org/10.1007/s00419-021-02094-x.
- Gan, L.L. and She, G.L. (2024a), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronautica, 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
- Gan, L.L. and She, G.L. (2024b), "Nonlinear transient response of magneto-electro-elastic cylindrical shells with initial geometric imperfection", Appl. Math. Model., 132, 166-186. https://doi.org/10.1016/j.apm.2024.04.049.
- Haghgoo, M., Ansari, R. and Hassanzadeh-Aghdam, M.K. (2020), "A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells", Thin Wall. Struct., 153, 106845. https://doi.org/10.1016/j.tws.2020.106845.
- Hoa, L.K., Hoai, B.T.T. and Chan, D.Q. (2019), "Nonlinear thermomechanical postbuckling analysis of ES-FGM truncated conical shells resting on elastic foundations", Mech. Adv. Mater. Struct., 26, 1089-1103. https://doi.org/10.1080/15376494.2018.1430274.
- Houshangi, A., Haghighi, S.E., Jafari, A.A. and Nezami, M. (2022), "Free damped vibration analysis of a truncated sandwich conical shell with a magnetorheological elastomer core", Wave. Random Complex Media, 1-28. https://doi.org/10.1080/17455030.2021.2009156.
- Hu, Y.D. and Xie, M.X. (2023), "Magnetoelastic simultaneous resonance of axially moving plate strip under a line load in stationary magnetic field", Thin Wall. Struct., 185, 110607. https://doi.org/10.1016/j.tws.2023.110607.
- Huang, W.H., Ren, J. and Forooghi, A. (2023), "Vibrational frequencies of FG-GPLRC viscoelastic rectangular plate subjected to different temperature loadings based on higher-order shear deformation theory and utilizing GDQ procedure", Mech. Bas. Des. Struct. Mach., 51, 1775-1800. https://doi.org/10.1080/15397734.2021.1878041.
- Huang, X.G., Yang, J. and Yang, Z.C. (2021), "Thermo-elastic analysis of functionally graded graphene nanoplatelets (GPLs) reinforced closed cylindrical shells", Appl. Math. Model., 97, 754-770. https://doi.org/10.1016/j.apm.2021.04.027.
- Kai, G., Yang, S.W., Zhang, W., Gu, X.J. and Ma, W.S. (2023), "Transient and steady-state nonlinear vibrations of FGM truncated conical shell subjected to blast loads and transverse periodic load using post-difference method", Mech. Adv. Mater. Struct., 30, 1188-1206. https://doi.org/10.1080/15376494.2022.2029638.
- Karamanli, A., Aydogdu, M. and Vo, T.P. (2021), "A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model", Aerosp. Sci. Technol., 111, 106550. https://doi.org/10.1016/j.ast.2021.106550.
- Karamanli, A., Eltaher, M.A., Thai, S. and Vo, T.P. (2023), "Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model", Eng. Struct., 278, 115566. https://doi.org/10.1016/j.engstruct.2022.115566.
- Khaniki, H.B., Ghayesh, M.H., Chin, R. and Chen, L.Q. (2022), "Experimental characteristics and coupled nonlinear forced vibrations of axially travelling hyperelastic beams", Thin Wall. Struct., 170, 108526. https://doi.org/10.1016/j.tws.2021.108526.
- Li, X., Chen, X.C. and Jiang, W.T. (2022), "Dynamic stability of graded graphene reinforced truncated conical shells under both periodic spinning speeds and axial loads considering thermal effects", Eng. Struct., 256, 113963. https://doi.org/10.1016/j.engstruct.2022.113963.
- Li, X., Li, Y.H. and Xie, T.F. (2019), "Vibration characteristics of a rotating composite laminated cylindrical shell in subsonic air flow and hygrothermal environment", Int. J. Mech. Sci., 150, 356-368. https://doi.org/10.1016/j.ijmecsci.2018.10.024.
- Li, X., Zhang, X.L. and Zhou, Z.H. (2022), "Free vibration analysis of a spinning composite laminated truncated conical shell under hygrothermal environment", Symmetry, 14, 1369. https://doi.org/10.3390/sym14071369.
- Li, Y.P. and She, G.L. (2024), "Nonlinear transient response analysis of rotating carbon nanotube reinforced composite cylindrical shells with initial geometrical imperfection", Arch. Civil Mech. Eng., 24(3), 161. https://doi.org/10.1007/s43452-024-00973-y.
- Liu, B., Guo, M., Liu, C.Y. and Xing, Y.F. (2019), "Free vibration of functionally graded sandwich shallow shells in thermal environments by a differential quadrature hierarchical finite element method", Compos. Struct., 225, 111173. https://doi.org/10.1016/j.compstruct.2019.111173.
- Liu, Y.F., Ling, X. and Wang, Y.Q. (2021), "Free and forced vibration analysis of 3D graphene foam truncated conical microshells", J. Brazil. Soc. Mech. Sci. Eng., 43, 133. https://doi.org/10.1007/s40430-021-02841-9.
- Liu, Z., Su, S.L., Xi, D.R. and Habibi, M. (2022), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Bas. Des. Struct. Mach., 50, 2688-2713. https://doi.org/10.1080/15397734.2020.1784201.
- Lotfan, S., Anamagh, M.R. and Bediz, B. (2021), "A general higher-order model for vibration analysis of axially moving doubly-curved panels/shells", Thin Wall. Struct., 164, 107813. https://doi.org/10.1016/j.tws.2021.107813.
- Lu, S.F., Xue, N., Zhang, W., Song, X.J. and Ma, W.S. (2021), "Dynamic stability of axially moving graphene reinforced laminated composite plate under constant and varied velocities", Thin Wall. Struct., 167, 108176. https://doi.org/10.1016/j.tws.2021.108176.
- Lv, Y., Zhang, J., Wu, J.Y. and Li, L.H. (2024), "Mechanical and thermal postbuckling of functionally graded graphene origami-enabled auxetic metamaterials plates", Eng. Struct., 298, 117043. https://doi.org/10.1016/j.engstruct.2023.117043.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. https://doi.org/10.12989/scs.2020.35.6.765.
- Mohamed, S., Assie, A.E., Mohamed, N. and Eltaher, M.A. (2022), "Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories", Steel Compos. Struct., 45(3), 305-330. https://doi.org/10.12989/scs.2022.45.3.305.
- Mohammadi, A., Ghasemi, F.A. and Shahgholi, M. (2021), "Stability analysis of an axially moving nanocomposite circular cylindrical shell with time-dependent velocity in thermal environments", Mech. Bas. Des. Struct. Mach., 49, 659-688. https://doi.org/10.1080/15397734.2019.1697933.
- Muller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng.: A, 362, 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1.
- Pham, Q.H., Tran, V. and Nguyen, P.C. (2024), "Exact solution for thermal vibration of multi-directional functionally graded porous plates submerged in fluid medium", Def. Technol., 35, 77-99. https://doi.org/10.1016/j.dt.2023.09.004.
- Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng.: A, 362, 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X.
- Raj, S.K., Sahoo, B., Nayak, A.R. and Panda, L.N. (2023), "Nonlinear dynamics of traveling beam with longitudinally varying axial tension and variable velocity under parametric and internal resonances", Nonlin. Dyn., 111, 3113-3147. https://doi.org/10.1007/s11071-022-07948-9.
- Reichardt, A., Shapiro, A.A., Otis, R., Dillon, R.P., Borgonia, J.P., McEnerney, B.W., ... & Beese, A.M. (2021), "Advances in additive manufacturing of metal-based functionally graded materials", Int. Mater. Rev., 66, 1-29. https://doi.org/10.1080/09506608.2019.1709354.
- She, G.L., Li, Y.P., He, Y.J. and Song, J.P. (2024), "Thermal post-buckling analysis of graphene platelets reinforced metal foams beams with initial geometric imperfection", Comput. Concrete, 33(3), 241-250. https://doi.org/10.12989/cac.2024.33.3.241.
- Singh, D., Krishna, V., Vemulapalli, P. and Gupta, A. (2024), "Influence of circular cutouts and elastic foundation on vibration characteristics of porous sandwich FGM plates under hygro-thermal environments", Mech. Bas. Des. Struct. Mach., 52, 1225-1251. https://doi.org/10.1080/15397734.2022.2140164.
- Singha, T.D., Rout, M., Bandyopadhyay, T. and Karmakar, A. (2020), "Free vibration analysis of rotating pretwisted composite sandwich conical shells with multiple debonding in hygrothermal environment", Eng. Struct., 204, 110058. https://doi.org/10.1016/j.engstruct.2019.110058.
- Sofiyev, A.H. (2020), "On the vibration and stability behaviors of heterogeneous- CNTRC-truncated conical shells under axial load in the context of FSDT", Thin Wall. Struct., 151, 106747. https://doi.org/10.1016/j.tws.2020.106747.
- Song, J.P. and She, G.L. (2024), "Nonlinear resonance and chaotic dynamic of rotating graphene platelets reinforced metal foams plates in thermal environment", Arch. Civil Mech. Eng., 24, 45. https://doi.org/10.1007/s43452-023-00846-w.
- Song, J.P., She, G.L. and Eltaher, M.A. (2024c), "Nonlinear aero-thermo-elastic flutter analysis of stiffened graphene platelets reinforced metal foams plates with initial geometric imperfection", Aerosp. Sci. Technol., 147, 109050. https://doi.org/10.1016/j.ast.2024.109050.
- Song, J.P., She, G.L. and He, Y. J. (2024b), "Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions", Steel Compos. Struct., 50(2), 149-158. https://doi.org/10.12989/scs.2024.50.2.149.
- Song, J.P., She, G.L. and He, Y.J. (2024a), "Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads", Geomech. Eng., 36(2), 99-109. https://doi.org/10.12989/gae.2024.36.2.099.
- Song, X.Y., Wang, C.G., Wang, S. and Zhang, Y.W. (2023), "Vibration evolution of laminated composite conical shell with arbitrary foundation in hygrothermal environment: experimental and theoretical investigation", Mech. Syst. Signal Pr., 200, 110565. https://doi.org/10.1016/j.ymssp.2023.110565.
- Tang, H., Dai, H.L. and Du, Y. (2022), "Effect of hygrothermal load on amplitude frequency response for CFRP spherical shell panel", Compos. Struct., 281, 114978. https://doi.org/10.1016/j.compstruct.2021.114978.
- Tang, H., Dai, H.L. and Wu, H. (2021), "An effect of hygrothermal effects on high velocity impact event for polymer matrix composites", Appl. Math. Model., 91, 653-669. https://doi.org/10.1016/j.apm.2020.09.062.
- Trang, L.T.N., Van Thinh, N. and Van Tung, H. (2023), "Vibration and thermomechanical transient response of doubly curved FGM panels with porosities and elastically restrained edges", Mech. Bas. Des. Struct. Mach., 1-23. https://doi.org/10.1080/15397734.2023.2242486.
- Wang, G., Zhu, Z.Y., Zhang, Y.F., Xu, R.K., Jiang, Y.W. and Liu, Q.S. (2023), "Free and forced vibration analysis of thin-walled cylindrical shells with arbitrary boundaries in steady thermal environment", Thin Wall. Struct., 185, 110556. https://doi.org/10.1016/j.tws.2023.110556.
- Wang, P.T., Yuan, P., Sahmani, S. and Safaei, B. (2023), "Size-dependent nonlinear harmonically soft excited oscillations of nonlocal strain gradient FGM composite truncated conical microshells with magnetostrictive facesheets", Mech. Bas. Des. Struct. Mach., 51, 1-27. https://doi.org/10.1080/15397734.2021.1903495.
- Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronautica, 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004.
- Yang, S., Hu, H.J., Mo, G.D., Zhang, X.W., Qin, J.J., Yin, S. and Zhang, J.B. (2021), "Dynamic modeling and analysis of an axially moving and spinning Rayleigh beam based on a time-varying element", Appl. Math. Model., 95, 409-434. https://doi.org/10.1016/j.apm.2021.01.049.
- Yang, S.W., Hao, Y.X., Zhang, W., Ma, W.S. and Wu, M.Q. (2023), "Nonlinear frequency and bifurcation of carbon fiber-reinforced polymer truncated laminated conical shell", J. Vib. Eng. Technol., 12(1), 457-468. https://doi.org/10.1007/s42417-023-00852-5.
- Yang, S.W., Hao, Y.X., Zhang, W., Yang, L. and Liu, L.T. (2021), "Nonlinear vibration of functionally graded graphene platelet-reinforced composite truncated conical shell using first-order shear deformation theory", Appl. Math. Mech., 42, 981-998. https://doi.org/10.1007/s10483-021-2747-9.
- Zhang, Y.W. and She, G.L. (2024a), "Combined resonance of graphene platelets reinforced metal foams cylindrical shells with spinning motion under nonlinear forced vibration", Eng. Struct., 300, 117177. https://doi.org/10.1016/j.engstruct.2023.117177.
- Zhang, Y.W. and She, G.L. (2024b), "Nonlinear combined resonance of axially moving conical shells under interaction between transverse and parametric modes", Commun. Nonlin. Sci. Numer. Simul., 131, 107849. https://doi.org/10.1016/j.cnsns.2024.107849.
- Zhang, Y.W. and She, G.L. (2024c), "Investigation on internal resonance of fluid conveying pipes with initial geometric imperfection", Appl. Ocean Res., 146, 103961. https://doi.org/10.1016/j.apor.2024.103961.
- Zhao, S.Y., Zhang, Y.Y., Zhang, Y.H., Yang, J. and Kitipornchai, S. (2022), "A functionally graded auxetic metamaterial beam with tunable nonlinear free vibration characteristics via graphene origami", Thin Wall. Struct., 181, 109997. https://doi.org/10.1016/j.tws.2022.109997.
- Zhu, K.F. and Chung, J.T. (2019), "Vibration and stability analysis of a simply-supported Rayleigh beam with spinning and axial motions", Appl. Math. Model., 66, 362-382. https://doi.org/10.1016/j.apm.2018.09.021.