DOI QR코드

DOI QR Code

Combined resonance of axially moving truncated conical shells in hygro-thermal environment

  • Zhong-Shi Ma (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Gui-Lin She (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2024.05.22
  • Accepted : 2024.07.19
  • Published : 2024.08.10

Abstract

This paper predicts the combined resonance behavior of the truncated conical shells (TCSs) under transverse and parametric coupled excitation. The motion governing equation is formulated in the framework of high-order shear deformation theory, von Kármán theory and Hamilton principle. The displacements and boundary conditions are characterized by a set of displacement shape functions with double Fourier series. Subsequently, the method of varying amplitude (MVA) is utilized to derive the approximate analytical solution of system response of TCSs. A comparative analysis is conducted to verify the accuracy of the current computational method. Additionally, the interaction mechanism of combined resonance, parametric resonance and primary resonance is examined. And the effect of damping coefficient, the external excitation, initial phase, axial motion speed, temperature variation, humidity variation, material properties and semi-vortex angle on the vibration mechanism are analyzed.

Keywords

References

  1. Aghamohammadi, M., Sorokin, V. and Mace, B. (2022), "Dynamic analysis of the response of Duffing-type oscillators subject to interacting parametric and external excitations", Nonlin. Dyn., 107, 99-120. https://doi.org/10.1007/s11071-021-06972-5.
  2. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
  3. Avramov, K., Uspensky, B., Sakhno, N. and Nikonov, O. (2022), "Transient response of functionally graded carbon nanotubes reinforced composite conical shell with ring-stiffener under the action of impact loads", Eur. J. Mech.-A/Solid., 91, 104429. https://doi.org/10.1016/j.euromechsol.2021.104429.
  4. Azizi, A., Khalili, S.M.R. and Fard, K.M. (2019), "Low-velocity impact response of sandwich conical shell with agglomerated single-walled carbon nanotubes-reinforced face sheets considering structural damping", J. Sandw. Struct. Mater., 21, 1481-1519. https://doi.org/10.1177/1099636217715807.
  5. Banerjee, R., Rout, M., Karmakar, A. and Bose, D. (2023), "Low-velocity impact response of hybrid CNTs reinforced conical shell under hygrothermal conditions", Fiber. Polym., 24, 2849-2866. https://doi.org/10.1007/s12221-023-00262-0,
  6. Barati, M.R. and Shahverdi, H. (2017), "Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory", Compos. Struct., 176, 982-995. https://doi.org/10.1016/j.compstruct.2017.06.004.
  7. Chan, D.Q., Long, V.D. and Duc, N.D. (2019), "Nonlinear buckling and postbuckling of FGM shear-deformable truncated conical shells reinforced by FGM stiffeners", Mech. Compos. Mater., 54, 745-764. https://doi.org/10.1007/s11029-019-9780-x.
  8. Chan, D.Q., Nguyen, P.D., Quang, V.D., Anh, V.T.T. and Duc, N.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., 31, 243-259 https://doi.org/10.12989/scs.2019.31.3.243.
  9. Do, V.N.V. and Lee, C.H. (2021), "Isogeometric analysis for buckling and postbuckling of graphene platelet reinforced composite plates in thermal environments", Eng. Struct., 244, 112746. https://doi.org/10.1016/j.engstruct.2021.112746.
  10. Dong, Y.H., Li, X.Y., Gao, K., Li, Y.H. and Yang, J. (2020), "Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment", Nonlin. Dyn., 99, 981-1000. https://doi.org/10.1007/s11071-019-05297-8.
  11. Duc, N.D., Cong, P.H., Tuan, N.D. and Thanh, N.V. (2017), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin Wall. Struct., 115, 300-310. https://doi.org/10.1016/j.tws.2017.02.016.
  12. Duc, N.D., Kim, S.E. and Chan, D.Q. (2018), "Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT", J. Therm. Stress., 41(3), 331-365. https://doi.org/10.1080/01495739.2017.1398623.
  13. Ellali, M., Bouazza, M. and Amara, K. (2022), "Thermal buckling of a sandwich beam attached with piezoelectric layers via the shear deformation theory", Arch. Appl. Mech., 92, 657-665. https://doi.org/10.1007/s00419-021-02094-x.
  14. Gan, L.L. and She, G.L. (2024a), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronautica, 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
  15. Gan, L.L. and She, G.L. (2024b), "Nonlinear transient response of magneto-electro-elastic cylindrical shells with initial geometric imperfection", Appl. Math. Model., 132, 166-186. https://doi.org/10.1016/j.apm.2024.04.049.
  16. Haghgoo, M., Ansari, R. and Hassanzadeh-Aghdam, M.K. (2020), "A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells", Thin Wall. Struct., 153, 106845. https://doi.org/10.1016/j.tws.2020.106845.
  17. Hoa, L.K., Hoai, B.T.T. and Chan, D.Q. (2019), "Nonlinear thermomechanical postbuckling analysis of ES-FGM truncated conical shells resting on elastic foundations", Mech. Adv. Mater. Struct., 26, 1089-1103. https://doi.org/10.1080/15376494.2018.1430274.
  18. Houshangi, A., Haghighi, S.E., Jafari, A.A. and Nezami, M. (2022), "Free damped vibration analysis of a truncated sandwich conical shell with a magnetorheological elastomer core", Wave. Random Complex Media, 1-28. https://doi.org/10.1080/17455030.2021.2009156.
  19. Hu, Y.D. and Xie, M.X. (2023), "Magnetoelastic simultaneous resonance of axially moving plate strip under a line load in stationary magnetic field", Thin Wall. Struct., 185, 110607. https://doi.org/10.1016/j.tws.2023.110607.
  20. Huang, W.H., Ren, J. and Forooghi, A. (2023), "Vibrational frequencies of FG-GPLRC viscoelastic rectangular plate subjected to different temperature loadings based on higher-order shear deformation theory and utilizing GDQ procedure", Mech. Bas. Des. Struct. Mach., 51, 1775-1800. https://doi.org/10.1080/15397734.2021.1878041.
  21. Huang, X.G., Yang, J. and Yang, Z.C. (2021), "Thermo-elastic analysis of functionally graded graphene nanoplatelets (GPLs) reinforced closed cylindrical shells", Appl. Math. Model., 97, 754-770. https://doi.org/10.1016/j.apm.2021.04.027.
  22. Kai, G., Yang, S.W., Zhang, W., Gu, X.J. and Ma, W.S. (2023), "Transient and steady-state nonlinear vibrations of FGM truncated conical shell subjected to blast loads and transverse periodic load using post-difference method", Mech. Adv. Mater. Struct., 30, 1188-1206. https://doi.org/10.1080/15376494.2022.2029638.
  23. Karamanli, A., Aydogdu, M. and Vo, T.P. (2021), "A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model", Aerosp. Sci. Technol., 111, 106550. https://doi.org/10.1016/j.ast.2021.106550.
  24. Karamanli, A., Eltaher, M.A., Thai, S. and Vo, T.P. (2023), "Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model", Eng. Struct., 278, 115566. https://doi.org/10.1016/j.engstruct.2022.115566.
  25. Khaniki, H.B., Ghayesh, M.H., Chin, R. and Chen, L.Q. (2022), "Experimental characteristics and coupled nonlinear forced vibrations of axially travelling hyperelastic beams", Thin Wall. Struct., 170, 108526. https://doi.org/10.1016/j.tws.2021.108526.
  26. Li, X., Chen, X.C. and Jiang, W.T. (2022), "Dynamic stability of graded graphene reinforced truncated conical shells under both periodic spinning speeds and axial loads considering thermal effects", Eng. Struct., 256, 113963. https://doi.org/10.1016/j.engstruct.2022.113963.
  27. Li, X., Li, Y.H. and Xie, T.F. (2019), "Vibration characteristics of a rotating composite laminated cylindrical shell in subsonic air flow and hygrothermal environment", Int. J. Mech. Sci., 150, 356-368. https://doi.org/10.1016/j.ijmecsci.2018.10.024.
  28. Li, X., Zhang, X.L. and Zhou, Z.H. (2022), "Free vibration analysis of a spinning composite laminated truncated conical shell under hygrothermal environment", Symmetry, 14, 1369. https://doi.org/10.3390/sym14071369.
  29. Li, Y.P. and She, G.L. (2024), "Nonlinear transient response analysis of rotating carbon nanotube reinforced composite cylindrical shells with initial geometrical imperfection", Arch. Civil Mech. Eng., 24(3), 161. https://doi.org/10.1007/s43452-024-00973-y.
  30. Liu, B., Guo, M., Liu, C.Y. and Xing, Y.F. (2019), "Free vibration of functionally graded sandwich shallow shells in thermal environments by a differential quadrature hierarchical finite element method", Compos. Struct., 225, 111173. https://doi.org/10.1016/j.compstruct.2019.111173.
  31. Liu, Y.F., Ling, X. and Wang, Y.Q. (2021), "Free and forced vibration analysis of 3D graphene foam truncated conical microshells", J. Brazil. Soc. Mech. Sci. Eng., 43, 133. https://doi.org/10.1007/s40430-021-02841-9.
  32. Liu, Z., Su, S.L., Xi, D.R. and Habibi, M. (2022), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Bas. Des. Struct. Mach., 50, 2688-2713. https://doi.org/10.1080/15397734.2020.1784201.
  33. Lotfan, S., Anamagh, M.R. and Bediz, B. (2021), "A general higher-order model for vibration analysis of axially moving doubly-curved panels/shells", Thin Wall. Struct., 164, 107813. https://doi.org/10.1016/j.tws.2021.107813.
  34. Lu, S.F., Xue, N., Zhang, W., Song, X.J. and Ma, W.S. (2021), "Dynamic stability of axially moving graphene reinforced laminated composite plate under constant and varied velocities", Thin Wall. Struct., 167, 108176. https://doi.org/10.1016/j.tws.2021.108176.
  35. Lv, Y., Zhang, J., Wu, J.Y. and Li, L.H. (2024), "Mechanical and thermal postbuckling of functionally graded graphene origami-enabled auxetic metamaterials plates", Eng. Struct., 298, 117043. https://doi.org/10.1016/j.engstruct.2023.117043.
  36. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. https://doi.org/10.12989/scs.2020.35.6.765.
  37. Mohamed, S., Assie, A.E., Mohamed, N. and Eltaher, M.A. (2022), "Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories", Steel Compos. Struct., 45(3), 305-330. https://doi.org/10.12989/scs.2022.45.3.305.
  38. Mohammadi, A., Ghasemi, F.A. and Shahgholi, M. (2021), "Stability analysis of an axially moving nanocomposite circular cylindrical shell with time-dependent velocity in thermal environments", Mech. Bas. Des. Struct. Mach., 49, 659-688. https://doi.org/10.1080/15397734.2019.1697933.
  39. Muller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng.: A, 362, 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1.
  40. Pham, Q.H., Tran, V. and Nguyen, P.C. (2024), "Exact solution for thermal vibration of multi-directional functionally graded porous plates submerged in fluid medium", Def. Technol., 35, 77-99. https://doi.org/10.1016/j.dt.2023.09.004.
  41. Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng.: A, 362, 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X.
  42. Raj, S.K., Sahoo, B., Nayak, A.R. and Panda, L.N. (2023), "Nonlinear dynamics of traveling beam with longitudinally varying axial tension and variable velocity under parametric and internal resonances", Nonlin. Dyn., 111, 3113-3147. https://doi.org/10.1007/s11071-022-07948-9.
  43. Reichardt, A., Shapiro, A.A., Otis, R., Dillon, R.P., Borgonia, J.P., McEnerney, B.W., ... & Beese, A.M. (2021), "Advances in additive manufacturing of metal-based functionally graded materials", Int. Mater. Rev., 66, 1-29. https://doi.org/10.1080/09506608.2019.1709354.
  44. She, G.L., Li, Y.P., He, Y.J. and Song, J.P. (2024), "Thermal post-buckling analysis of graphene platelets reinforced metal foams beams with initial geometric imperfection", Comput. Concrete, 33(3), 241-250. https://doi.org/10.12989/cac.2024.33.3.241.
  45. Singh, D., Krishna, V., Vemulapalli, P. and Gupta, A. (2024), "Influence of circular cutouts and elastic foundation on vibration characteristics of porous sandwich FGM plates under hygro-thermal environments", Mech. Bas. Des. Struct. Mach., 52, 1225-1251. https://doi.org/10.1080/15397734.2022.2140164.
  46. Singha, T.D., Rout, M., Bandyopadhyay, T. and Karmakar, A. (2020), "Free vibration analysis of rotating pretwisted composite sandwich conical shells with multiple debonding in hygrothermal environment", Eng. Struct., 204, 110058. https://doi.org/10.1016/j.engstruct.2019.110058.
  47. Sofiyev, A.H. (2020), "On the vibration and stability behaviors of heterogeneous- CNTRC-truncated conical shells under axial load in the context of FSDT", Thin Wall. Struct., 151, 106747. https://doi.org/10.1016/j.tws.2020.106747.
  48. Song, J.P. and She, G.L. (2024), "Nonlinear resonance and chaotic dynamic of rotating graphene platelets reinforced metal foams plates in thermal environment", Arch. Civil Mech. Eng., 24, 45. https://doi.org/10.1007/s43452-023-00846-w.
  49. Song, J.P., She, G.L. and Eltaher, M.A. (2024c), "Nonlinear aero-thermo-elastic flutter analysis of stiffened graphene platelets reinforced metal foams plates with initial geometric imperfection", Aerosp. Sci. Technol., 147, 109050. https://doi.org/10.1016/j.ast.2024.109050.
  50. Song, J.P., She, G.L. and He, Y. J. (2024b), "Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions", Steel Compos. Struct., 50(2), 149-158. https://doi.org/10.12989/scs.2024.50.2.149.
  51. Song, J.P., She, G.L. and He, Y.J. (2024a), "Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads", Geomech. Eng., 36(2), 99-109. https://doi.org/10.12989/gae.2024.36.2.099.
  52. Song, X.Y., Wang, C.G., Wang, S. and Zhang, Y.W. (2023), "Vibration evolution of laminated composite conical shell with arbitrary foundation in hygrothermal environment: experimental and theoretical investigation", Mech. Syst. Signal Pr., 200, 110565. https://doi.org/10.1016/j.ymssp.2023.110565.
  53. Tang, H., Dai, H.L. and Du, Y. (2022), "Effect of hygrothermal load on amplitude frequency response for CFRP spherical shell panel", Compos. Struct., 281, 114978. https://doi.org/10.1016/j.compstruct.2021.114978.
  54. Tang, H., Dai, H.L. and Wu, H. (2021), "An effect of hygrothermal effects on high velocity impact event for polymer matrix composites", Appl. Math. Model., 91, 653-669. https://doi.org/10.1016/j.apm.2020.09.062.
  55. Trang, L.T.N., Van Thinh, N. and Van Tung, H. (2023), "Vibration and thermomechanical transient response of doubly curved FGM panels with porosities and elastically restrained edges", Mech. Bas. Des. Struct. Mach., 1-23. https://doi.org/10.1080/15397734.2023.2242486.
  56. Wang, G., Zhu, Z.Y., Zhang, Y.F., Xu, R.K., Jiang, Y.W. and Liu, Q.S. (2023), "Free and forced vibration analysis of thin-walled cylindrical shells with arbitrary boundaries in steady thermal environment", Thin Wall. Struct., 185, 110556. https://doi.org/10.1016/j.tws.2023.110556.
  57. Wang, P.T., Yuan, P., Sahmani, S. and Safaei, B. (2023), "Size-dependent nonlinear harmonically soft excited oscillations of nonlocal strain gradient FGM composite truncated conical microshells with magnetostrictive facesheets", Mech. Bas. Des. Struct. Mach., 51, 1-27. https://doi.org/10.1080/15397734.2021.1903495.
  58. Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronautica, 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004.
  59. Yang, S., Hu, H.J., Mo, G.D., Zhang, X.W., Qin, J.J., Yin, S. and Zhang, J.B. (2021), "Dynamic modeling and analysis of an axially moving and spinning Rayleigh beam based on a time-varying element", Appl. Math. Model., 95, 409-434. https://doi.org/10.1016/j.apm.2021.01.049.
  60. Yang, S.W., Hao, Y.X., Zhang, W., Ma, W.S. and Wu, M.Q. (2023), "Nonlinear frequency and bifurcation of carbon fiber-reinforced polymer truncated laminated conical shell", J. Vib. Eng. Technol., 12(1), 457-468. https://doi.org/10.1007/s42417-023-00852-5.
  61. Yang, S.W., Hao, Y.X., Zhang, W., Yang, L. and Liu, L.T. (2021), "Nonlinear vibration of functionally graded graphene platelet-reinforced composite truncated conical shell using first-order shear deformation theory", Appl. Math. Mech., 42, 981-998. https://doi.org/10.1007/s10483-021-2747-9.
  62. Zhang, Y.W. and She, G.L. (2024a), "Combined resonance of graphene platelets reinforced metal foams cylindrical shells with spinning motion under nonlinear forced vibration", Eng. Struct., 300, 117177. https://doi.org/10.1016/j.engstruct.2023.117177.
  63. Zhang, Y.W. and She, G.L. (2024b), "Nonlinear combined resonance of axially moving conical shells under interaction between transverse and parametric modes", Commun. Nonlin. Sci. Numer. Simul., 131, 107849. https://doi.org/10.1016/j.cnsns.2024.107849.
  64. Zhang, Y.W. and She, G.L. (2024c), "Investigation on internal resonance of fluid conveying pipes with initial geometric imperfection", Appl. Ocean Res., 146, 103961. https://doi.org/10.1016/j.apor.2024.103961.
  65. Zhao, S.Y., Zhang, Y.Y., Zhang, Y.H., Yang, J. and Kitipornchai, S. (2022), "A functionally graded auxetic metamaterial beam with tunable nonlinear free vibration characteristics via graphene origami", Thin Wall. Struct., 181, 109997. https://doi.org/10.1016/j.tws.2022.109997.
  66. Zhu, K.F. and Chung, J.T. (2019), "Vibration and stability analysis of a simply-supported Rayleigh beam with spinning and axial motions", Appl. Math. Model., 66, 362-382. https://doi.org/10.1016/j.apm.2018.09.021.