DOI QR코드

DOI QR Code

Seismic risk priority classification of reinforced concrete buildings based on a predictive model

  • Isil Sanri Karapinar (Department of Civil Engineering, Maltepe University) ;
  • Ayse E. Ozsoy Ozbay (Department of Civil Engineering, Maltepe University) ;
  • Emin Ciftci (Department of Civil Engineering, Maltepe University)
  • Received : 2024.02.26
  • Accepted : 2024.07.15
  • Published : 2024.08.10

Abstract

The purpose of this study is to represent a useful alternative for the preliminary seismic vulnerability assessment of existing reinforced concrete buildings by introducing a statistical approach employing the binary logistic regression technique. Two different predictive statistical models, namely full and reduced models, were generated utilizing building characteristics obtained from the damage database compiled after 1999 Düzce earthquake. Among the inspected building parameters, number of stories, overhang ratio, priority index, soft story index, normalized redundancy ratio and normalized lateral stiffness index were specifically selected as the predictor variables for vulnerability classification. As a result, normalized redundancy ratio and soft story index were identified as the most significant predictors affecting seismic vulnerability in terms of life safety performance level. In conclusion, it is revealed that both models are capable of classifying the set of buildings being severely damaged or collapsed with a balanced accuracy of 73%, hence, both are able to filter out high-priority buildings for life safety performance assessment. Thus, in this study, having the same high accuracy as the full model, the reduced model using fewer predictors is proposed as a simple and viable classifier for determining life safety levels of reinforced concrete buildings in the preliminary seismic risk assessment.

Keywords

References

  1. Barbat, A.H., Pujades, L.G. and Lantada, N. (2007), "Seismic damage evaluation in urban areas using the capacity spectrum method: Application to Barcelona", Soil Dyn. Earthq. Eng., 28(10-11), 851-865. https://doi.org/10.1016/j.soildyn.2007.10.006.
  2. Benedetti, D. and Petrini, V. (1984), "On the seismic vulnerability of masonry buildings: An evaluation method", L'industria delle Costruzioni. 149, 66-74.
  3. Box, G.E.P. and Tidwell, P.W. (1962), "Transformation of the independent variables", Technometrics, 4, 531-550. https://doi.org/10.1080/00401706.1962.10490038.
  4. Calvi. G.M. (1999), "A displacement based approach for vulnerability evaluation of classes of buildings", J. Earthq. Eng. 3(3), 411-438.
  5. Cavaleri, L., Di Trapani, F. and Ferrotto, M.F. (2017), "A new hybrid procedure for the definition of seismic vulnerability in Mediterranean cross-border urban areas", Nat. Hazard., 86, 517-541. https://doi.org/10.1007/s11069-016-2646-9.
  6. Cox, D.R. and Snell, E.J. (1989), Analysis of Binary Data, 2nd Edition, Chapman and Hall, London.
  7. Crowley, H., Pinho, R. and Bommer, J.J. (2004), "A probabilistic displacement-based vulnerability assessment procedure for earthquake loss estimation", Bull. Earthq. Eng., 2, 173-219. https://doi.org/10.1007/s10518-004-2290-8.
  8. Demartinos, K. and Dritsos, S. (2006), "First-level pre-earthquake assessment of buildings using fuzzy logic", Earthq. Spectra, 22(4), 865-885. https://doi.org/10.1193/1.2358176.
  9. Dolce, M., Kappos, A., Masi, A., Penelis, G. and Vona, M. (2017), "Vulnerability assessment and earthquake damage scenarios of the building stock of Potenza (Southern Italy) using Italian and Greek methodologies", Eng. Struct., 28(3), 357-371. https://doi.org/10.1016/j.engstruct.2005.08.009.
  10. Evans, J.D. (1996), Straightforward Statistics for the Behavioral Sciences, Brooks/Cole Publishing, Pacific Grove, CA.
  11. Ferreira, T.M., Vicente, R., Mendes da Silva, J.A.R., Varum, H. and Costa, A. (2013), "Seismic vulnerability assessment of historical urban centres: Case study of the old city centre in Seixal, Portugal", Bull. Earthq. Eng., 11(5), 1753-1773. https://doi.org/10.1007/s10518-013-9447-2.
  12. Fox, J. (2016), Applied Regression Analysis and Generalized Linear Models, 3rd Edition, Sage, Canada.
  13. Harirchian, E. and Lahmer, T. (2020), "Improved rapid visual earthquake hazard safety evaluation of existing buildings using a type-2 fuzzy logic model", Appl. Sci., 10(7), 2375. https://doi.org/10.3390/app10072375.
  14. Hassan, A.F. and Sozen, M.A. (1997), "Seismic vulnerability assessment of low-rise buildings in regions with infrequent earthquakes", ACI Struct. J., 94(1), 31-39. https://doi.org/10.14359/458.
  15. Hosmer, D.W. and Lemeshow, S. (2000), Applied Logistic Regression, 2nd Edition, Chapter 5, John Wiley and Sons, New York.
  16. Jain, S.K., Mitra, K., Kumar, M. and Shah, M. (2010), "A proposed rapid visual screening procedure for seismic evaluation of RC-frame buildings in India", Earthq. Spectra, 26(3), 709-729. https://doi.org/10.1193/1.3456711.
  17. James, G., Witten, D., Hastie, T. and Robert Tibshirani, R. (2013), An Introduction to Statistical Learning: with Applications in R, Springer, New York.
  18. Kappos, A.J., Panagopoulos, G., Panagiotopoulos, C. and Penelis, G. (2006), "A hybrid method for the vulnerability assessment of R/C and URM buildings", Bull. Earthq. Eng., 4, 391-413. https://doi.org/10.1007/s10518-006-9023-0.
  19. Kohavi, R. and Provost, F. (1998), "Glossary of terms", Mach. Learn., 30, 271-274. https://doi.org/10.1023/A:1017181826899.
  20. Kuhn, M. (2008), "Building predictive models in R using the caret package", J. Stat. Softw., 28(5), 1-26. https://doi.org/10.18637/jss.v028.i05.
  21. Lagomarsino, S. and Giovinazzi, S. (2006), "Macroseismic and mechanical models for the vulnerability assessment of current buildings", Bull. Earthq. Eng., 4(4), 415-433. https://doi.org/10.1007/s10518-006-9024-z.
  22. Li, S.Q. (2023), "A simplified prediction model of structural seismic vulnerability considering a multivariate fuzzy membership algorithm", J. Earthq. Eng., 28(3), 707-730. https://doi.org/10.1080/13632469.2023.2217945.
  23. Li, S.Q. (2024a), "Comparison of RC girder bridge and building vulnerability considering empirical seismic damage", Ain Shams Eng. J., 15(1), 102287. https://doi.org/10.1016/j.asej.2023.102287.
  24. Li, S.Q. (2024b), "Improved seismic intensity measures and regional structural risk estimation models", Soil Dyn. Earthq. Eng., 176, 108256. https://doi.org/10.1016/j.soildyn.2023.108256.
  25. Li, S.Q. and Formisano, A. (2024), "Updated empirical vulnerability model considering the seismic damage of typical structures", Bull. Earthq. Eng., 22, 1147-1185. https://doi.org/10.1007/s10518-023-01814-8.
  26. Li, S.Q. and Gardoni, P. (2024), "Seismic loss assessment for regional building portfolios considering empirical seismic vulnerability functions", Bull. Earthq. Eng., 22, 487-517. https://doi.org/10.1007/s10518-023-01793-w.
  27. Li, S.Q. and Zhong, J. (2024), "Development of a seismic vulnerability and risk model for typical bridges considering innovative intensity measures", Eng. Struct., 302, 117431. https://doi.org/10.1016/j.engstruct.2023.117431.
  28. Li, S.Q., Du, K., Li, Y.R., Han, J.C., Qin, P.F. and Liu, H.B. (2024b), "Seismic vulnerability estimation of RC structures considering empirical and numerical simulation methods", Arch. Civil Mech. Eng., 24, 68. https://doi.org/10.1007/s43452-024-00874-0.
  29. Li, S.Q., Li, Y.R., Han, J.C., Qin, P.F. and Du, K. (2024a), "Seismic hazard models for typical urban masonry structures considering optimized regression algorithms", Bull. Earthq. Eng., 22, 2797-2827. https://doi.org/10.1007/s10518-024-01879-z.
  30. Li, S.Q., Liu, H.B., Du, K., Han, J.C., Li, Y.R. and Yin, L.H. (2023), "Empirical seismic vulnerability probability prediction model of RC structures considering historical field observation", Struct. Eng. Mech., 6(4), 547-571. https://doi.org/10.12989/sem.2023.86.4.547.
  31. Li, S.Q., Liu, H.B., Farsangi, E.N. and Du, K. (2023), "Seismic fragility estimation considering field inspection of reinforced concrete girder bridges", Struct. Infrastr. Eng., 1-17. https://doi.org/10.1080/15732479.2023.2208565.
  32. Macnab, J.J., Koval, J.J., Speechley, K.N. and Campbell, M.K. (2005), "Influential observations in weighted analyses: Examples from the National Longitudinal Survey of Children and Youth (NLSCY)", Chronic Dis. Can., 26(1), 1-8.
  33. Masi, A. (2003), "Seismic vulnerability assessment of gravity load designed R/C frames", Bull. Earthq. Eng., 1(3), 371-395. https://doi.org/10.1023/B:BEEE.0000021426.31223.60.
  34. McFadden, D. (1973), Conditional Logit Analysis of Qualitative Choice be, Ed. Zarembka, P., Frontiers in Econometrics, Academic Press, New York.
  35. McFadden, D. (1979), "Quantitative methods for analysing travel behavior of individuals: Some recent developments", Behavioural Travel Modelling, Eds. Hensher, D.A. and Stopher, P.R., Croom Helm, London.
  36. Noura, H., Abed, M. and Mebarki, A. (2021), "Post-disaster damage assessment of structures by neural networks", Earthq. Struct., 21(4), 413-423. https://doi.org/10.12989/eas.2021.21.4.413.
  37. Oumedour, A. and Lazzali, F. (2022), "Modifier parameters and quantifications for seismic vulnerability assessment of reinforced concrete buildings", Earthq. Struct., 22(1), 83-94. https://doi.org/10.12989/eas.2022.22.1.083.
  38. Ozhendekci, N. and Ozhendekci, D. (2012), "Rapid seismic vulnerability assessment of low- to mid-rise reinforced concrete buildings using Bingol's regional data", Earthq. Spectra, 28(3), 1165-1187. https://doi.org/10.1193/1.4000065.
  39. Rapone, D., Brando, G., Spacone, E. and De Matteis, G. (2018), "Seismic vulnerability assessment of historic centers: Description of a predictive method and application to the case study of Scanno (Abruzzi, Italy)", Int. J. Arch. Herit., 12(7-8), 1171-1195. https://doi.org/10.1080/15583058.2018.1503373.
  40. Rodenas, J.L., Garcia-Ayllon, S. and A. Tomas. (2018), "Estimation of the buildings seismic vulnerability: A methodological proposal for planning Ante-Earthquake scenarios in urban areas", Appl. Sci., 8(7), 1208. https://doi.org/10.3390/app8071208.
  41. Rosti, A., Rota, M. and Penna, A. (2018), "Damage classification and derivation of damage probability matrices from L'Aquila (2009) post-earthquake survey data", Bull. Earthq. Eng., 16(9), 3687-3720. https://doi.org/10.1007/s10518-018-0352-6.
  42. Sen, Z. (2010), "Rapid visual earthquake hazard evaluation of existing buildings by fuzzy logic modeling", Exp. Syst. Appl., 37(8), 5653-5660. https://doi.org/10.1016/j.eswa.2010.02.046.
  43. Silva, V., Crowley, H., Varum, H., Pinho, R. and Sousa, R. (2014), "Evaluation of analytical methodologies used to derive vulnerability functions", Earthq. Eng. Struct. Dyn., 43, 181-204. https://doi.org/10.1002/eqe.2337.
  44. Sim, C., Song, C., Skok, N., Irfanoglu, A., Pujol, S. and Sozen, M. (2022), "Database of low-rise reinforced concrete buildings with earthquake damage", https://datacenterhub.org/resources. (accessed December 18, 2022)
  45. Singhal, A. and Kiremidjian, A.S. (1996), "Method for probabilistic evaluation of seismic structural damage", J. Struct. Eng., 122(12), 1459-1467. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1459).
  46. Structural Engineering Research Unit (SERU) (2022), Advances in Earthquake Engineering for Urban Risk Reduction, Civil Engineering Department, Middle East Technical University.
  47. Sucuoglu, H., Yazgan, U. and Yakut, A. (2007), "A screening procedure for seismic risk assessment in urban building stocks", Earthq. Spectra, 23(2), 441-458. http://doi.org/10.1193/1.2720931.
  48. Tesfamariam, S. and Saatcioglu, M. (2008), "Risk-based seismic evaluation of reinforced concrete buildings", Earthq. Spectra, 24(3), 795-821. https://doi.org/10.1193/1.2952767.
  49. Tesfamariam, S. and Saatcioglu, M. (2010), "Seismic vulnerability assessment of reinforced concrete buildings using hierarchical fuzzy rule base modeling", Earthq. Spectra, 26(1), 235-256. https://doi.org/10.1193/1.3280115.
  50. Tomas, A., Rodenas, J.L. and Garcia-Ayllon, S. (2017), "Proposal for new values of behaviour modifiers for seismic vulnerability evaluation of reinforced concrete buildings applied to Lorca (Spain) using damage data from the 2011 Earthquake", Bull. Earthq. Eng., 15(9), 3943-3962. https://doi.org/10.1007/s10518-017-0100-3.
  51. Whitman, R.V., Anagnos, T., Kircher, C.A., Lagorio, H.J., Lawson R.S. and Schneider, P. (1997), "Development of a national earthquake loss estimation methodology", Earthq. Spectra, 13(4), 643-661. https://doi.org/10.1193/1.1585973.
  52. Yucemen, M.S., Ozcebe, G. and Pay, A.C. (2004), "Prediction of potential damage due to severe earthquakes", Struct. Saf., 26(3), 349-366. http://doi.org/10.1016/j.strusafe.2003.09.002.