DOI QR코드

DOI QR Code

Insecticidal efficiency of orange peel (Citrus sinensis) essential oil nanoemulsions against Rhyzopertha dominica (Fabricius, 1792) and Tribolium castaneum (Herbst, 1797)

  • Semra Cicek (Department of Agriculture Biotechnology, University of Ataturk) ;
  • Yesim Bulak Korkmaz (Department of Plant Protection, University of Ataturk) ;
  • Sevda Isik (Department of Agriculture Biotechnology, University of Ataturk)
  • Received : 2023.08.06
  • Accepted : 2024.07.16
  • Published : 2024.07.25

Abstract

The insecticidal efficiency of orange (Citrus sinensis) peel essential oil (OP-EO) is limited because of its low stability under environmental conditions. Nanoemulsion formulations show promise in overcoming this limitation. Therefore, this study aimed to formulate and characterize the OP-EO nanoemulsion form (OP-EON) and investigate its insecticidal properties against two significant storage pests, Rhyzopertha dominica (Fabricius, 1792), and Tribolium castaneum (Herbst, 1797). The OP-EON (4:3:3:90 w/w, EO: Tween 80: Ethanol: water) was successfully created using an ultrasonic homogenizer. The major chemical components of the OP-EO were determined to be D-limonene (87.93%), myrcene (3.62%), and α-pinene (1.34%) through GC-MS analysis. The OP-EON was characterized using TEM (50-100 nm), Zeta sizer (the mean droplet particle size of 58.60 nm, the ζ-potential value of -12.6 mV, and the polydispersity index of 0.486), and FT-IR analysis. After 7 days, exposure to 500 ppm of the OP-EON resulted in 50% and 30% mortality rates in R. dominica and T. castaneum, respectively. Exposure to 1000 ppm of OP-EON resulted in 90% and 55% mortality in R. dominica and T. castaneum, respectively, after 7 days. Overall, these results clearly showed the potential to exceed the limits of the insecticidal activity of the OP-EO with its nanoemulsion form.

Keywords

Acknowledgement

The methods for obtain and characterization of the OPEON were performed due to the project (FHD-2022-11088) supported by the Ataturk University Scientific Research Projects Coordination Unit (Erzurum, Turkey). In addition, the authors would like to thank Prof. Dr. Omer Cevdet BILGIN for his support in the statistical analysis of the data.

References

  1. Abdelgaleil, S.A.M., Badawy, M.E.I., Shawir, M.S. and Mohamed, M.I.E. (2015), "Chemical composition, fumigant and contact toxicities of essential oils isolated from Egyptian plants against the stored grain insects, Sitophilus oryzae L. and Tribolium castaneum (Herbst)", Egypt J. Biol. Pest. Control., 25(3), 639-647.
  2. Abdelgaleil, S.A.M., Gad, H.A., Ramadan, G.R., El-Bakry, A.M. and El-Sabrout, A.M. (2021), "Monoterpenes: Chemistry, insecticidal activity against stored product insects and modes of action-a review", Int. J. Pest. Manag., 1-23. https://doi.org/10.1080/09670874.2021.1982067
  3. Abdelgaleil, S.A., Mohamed, M.I., Badawy, M.E. and El-arami, S.A. (2009), "Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity", J. Chem. Ecol., 35, 518-525. https://doi.org/10.1007/s10886-009-9635-3
  4. Achimon, F., Leal, L.E., Pizzolitto, R.P., Brito, V.D., Alarcon, R., Omarini, A.B. and Zygadlo, J.A. (2022), "Insecticidal and antifungal effects of lemon, orange, and grapefruit peel essential oils from Argentina", AgriScientia, 39(1), 71-82. https://doi.org/10.31047/1668.298x.v39.n1.33777
  5. Adak, T., Barik, N., Patil, N.B., Gadratagi, B.G., Annamalai, M., Mukherjee, A.K. and Rath, P.C. (2020), "Nanoemulsion of eucalyptus oil: An alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) of rice", Ind. Crops Prod., 143, 111849. https://doi.org/10.1016/j.indcrop.2019.111849
  6. Alimoradlu, K. and Zamani, A. (2022), "Hydrophobicity in nanocatalysis", Adv. Nano Res., 12(1), 49-63. https://doi.org/10.12989/anr.2022.12.1.049
  7. Alparslan, Y., Baygar, T., Metin, C., Yapici, H. H. and Baygar, T. (2019), "The role of gelatin-based film coating combined with orange peel essential oil on the quality of refrigerated shrimp", Acta Aquat. Turc., 15(2), 197-212. https://doi.org/10.22392/actaquatr.485132
  8. Ameur, A., Bensid, A., Ozogul, F., Ucar, Y., Durmus, M., Kulawik, P. and Boudjenah-Haroun, S. (2022), "Application of oil-in-water nanoemulsions based on grape and cinnamon essential oils for shelf-life extension of chilled flathead mullet fillets", J. Sci. Food Agric., 102(1), 105-112. https://doi.org/10.1002/jsfa.11336
  9. Attia, M.A., Wahba, T.F., Shaarawy, N., Moustafa, F.I., Guedes, R.N.C. and Dewer, Y. (2020), "Stored grain pest prevalence and insecticide resistance in Egyptian populations of the red flour beetle Tribolium castaneum (Herbst) and the rice weevil Sitophilus oryzae (L.)", J. Stored Prod. Res., 87, 101611. https://doi.org/10.1016/j.jspr.2020.101611
  10. Azmy, M.R., E El Gohary, E.G., M Mahmoud, D., AM Salem, D., A Abdou, M. and S Salama, M. (2019), "Assessment of larvicidal activity of nanoemulsion from Citrus sinensis essential oil on Culex pipiens L. (Diptera: Culicidae)", Egypt J. Aquat. Biol. Fish., 23(3), 61-67. https://doi.org/10.21608/ejabf.2019.35100
  11. Azmy, R.M. (2021), Waste Recycling Technologies for Nanomaterials Manufacturing, Springer, Cham, Switzerland.
  12. Bedini, S., Flamini, G., Girardi, J., Cosci, F. and Conti, B. (2015), "Not just for beer: Evaluation of spent hops (Humulus lupulus L.) as a source of eco-friendly repellents for insect pests of stored foods", J. Pest. Sci., 88, 583-592. https://doi.org/10.1007/s10340-015-0647-1
  13. Benelli, G. (2018), "Mode of action of nanoparticles against insects", Environ. Sci. Pollut. Res., 25(13), 12329-12341. https://doi.org/10.1007/s11356-018-1850-4
  14. Bento, R., Pagan, E., Berdejo, D., de Carvalho, R.J., Garcia-Embid, S., Maggi, F., Magnani, M., de Souza, E.L., Garcia-Gonzalo, D. and Pagan, R. (2020), "Chitosan nanoemulsions of cold-pressed orange essential oil to preserve fruit juices". Int. J. Food Microbiol., 331, 108786. https://doi.org/10.1016/j.ijfoodmicro.2020.108786
  15. Chuesiang, P., Siripatrawan, U., Sanguandeekul, R., McLandsborough, L. and McClements, D.J. (2018), "Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration", J. Colloid Interf. Sci., 514, 208-216. https://doi.org/10.1016/j.jcis.2017.11.084
  16. Cicek, S. and Nadaroglu, H. (2015), "The use of nanotechnology in the agriculture". Adv. Nano Res., 3(4), 207-223. https://doi.org/10.12989/anr.2015.3.4.207
  17. Cicek, S., Korkmaz, Y.B. and Isik, S. (2024), "A new economical route for the grapefruit peel essential oil: Nanoemulsion form and insecticidal activity", S. Afr. J. Bot., 169, 56-65. https://doi.org/10.1016/j.sajb.2024.04.005
  18. Dagalan, Z., Behboudikhiavi, S., Turgut, M., Sevim, M., Kasapoglu, A. E., Nisanci, B. and Metin, O. (2021), "Nickel-palladium alloy nanoparticles supported on reduced graphene oxide decorated with metallic aluminum nanoparticles (Al-rGO/NiPd): A multifunctional catalyst for the transfer hydrogenation of nitroarenes and olefins using water as a hydrogen source", Inorg. Chem. Front., 8(9), 2200-2212. https://doi.org/10.1039/D0QI01363C
  19. Das, S., Vishakha, K., Banerjee, S., Mondal, S. and Ganguli, A. (2020), "Sodium alginate-based edible coating containing nanoemulsion of Citrus sinensis essential oil eradicates planktonic and sessile cells of food-borne pathogens and increased quality attributes of tomatoes", Int. J. Biol. Macromol., 162, 1770-1779. https://doi.org/10.1016/j.ijbiomac.2020.08.086
  20. de Carvalho Ribeiro, N., da Camara, C.A.G., de Souza Born, F. and de Siqueira, H.A .A. (2010), "Insecticidal activity against Bemisia tabaci biotype B of peel essential oil of Citrus sinensis var. pear and Citrus aurantium cultivated in northeast Brazil", Nat. Prod. Commun., 5(11), 1819-1822. https://doi.org/10.1177/1934578X1000501126
  21. Durmus, M., Ozogul, Y., Ozyurt, G., Ucar, Y., Kosker, A.R., Yazgan, H., Ibrahim S.A. and Ozogul, F. (2023), "Effects of citrus essential oils on the oxidative stability of microencapsulated fish oil by spray-drying", Front. Nutr., 9, 3216. https://doi.org/10.3389/fnut.2022.978130
  22. Durmus, M. (2020), "The effects of nanoemulsions based on citrus essential oils (orange, mandarin, grapefruit, and lemon) on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets at 4±2℃", J. Food Saf., 40(1), e12718. https://doi.org/10.1111/jfs.12718
  23. Esmaili, F., Sanei-Dehkordi, A., Amoozegar, F. and Osanloo, M. (2021), "A review on the use of essential oil-based nanoformulations in control of mosquitoes", Biointerface Res. Appl. Chem., 11(5), 12516-12529. https://doi.org/10.33263/BRIAC115.1251612529
  24. Farouk, A., Hathout, A.S., Amer, M.M. and Hussain, O.A. (2022) "The impact of nanoencapsulation on volatile constituents of Citrus sinensis L. essential oil and their antifungal activity", Egypt J. Chem., 65(3), 527-538. https://doi.org/10.21608/ejchem.2021.95579.448
  25. Filomeno, C.A., Barbosa, L.C.A., Teixeira, R.R., Pinheiro, A.L., de Sa Farias, E., Ferreira, J.S. and Picanco, M.C. (2020), "Chemical diversity of essential oils of Myrtaceae species and their insecticidal activity against Rhyzopertha dominica", Crop Prot., 137, 105309. https://doi.org/10.1016/j.cropro.2020.105309
  26. Gad, H.A., Ramadan, G.R., El-Bakry, A.M., El-Sabrout, A.M. and Abdelgaleil, S.A. (2022), "Monoterpenes: Promising natural products for public health insect control- A review", Int. J. Trop. Insect Sci., 42, 1059-1075. https://doi.org/10.1007/s42690-021-00692-4
  27. Gavahian, M., Chu, Y.H. and Mousavi Khaneghah, A. (2019), "Recent advances in orange oil extraction: An opportunity for the valorisation of orange peel waste a review", Int. J. Food Sci. Technol., 54(4), 925-932. https://doi.org/10.1111/ijfs.13987
  28. Geraci, A., Di Stefano, V., Di Martino, E., Schillaci, D. and Schicchi, R. (2017), "Essential oil components of orange peels and antimicrobial activity", Nat. Prod. Res., 31(6), 653-659. https://doi.org/10.1080/14786419.2016.1219860
  29. Giunti, G., Campolo, O., Laudani, F., Zappala, L. and Palmeri, V. (2021), "Bioactivity of essential oil-based nano-biopesticides toward Rhyzopertha dominica (Coleoptera: Bostrichidae)", Ind. Crops Prod., 162, 113257. https://doi.org/10.1016/j.indcrop.2021.113257
  30. Giunti, G., Palermo, D., Laudani, F., Algeri, G. M., Campolo, O. and Palmeri, V. (2019), "Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests", Ind. Crops Prod., 142, 111869. https://doi.org/10.1016/j.indcrop.2019.111869
  31. Gonzalez, J.O.W., Gutierrez, M.M., Ferrero, A.A. and Band, B.F. (2014), "Essential oils nanoformulations for stored-product pest control-characterization and biological properties", Chemosphere, 100, 130-138. https://doi.org/10.1016/j.chemosphere.2013.11.056
  32. Gultepe, N. (2020), "Protective effect of d-limonene derived from orange peel essential oil against Yersinia ruckeri in rainbow trout", Aquac. Rep. 18, 100417. https://doi.org/10.1016/j.aqrep.2020.100417
  33. Hashem, A.S., Awadalla, S.S., Zayed, G.M., Maggi, F. and Benelli, G. (2018), "Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum-insecticidal activity and mode of action", Environ. Sci. Pollut. Res., 25, 18802-18812. https://doi.org/10.1007/s11356-018-2068-1
  34. Hassanzadeh, H., Alizadeh, M., Hassanzadeh, R. and Ghanbarzadeh, B. (2022), "Garlic essential oil-based nanoemulsion carrier: Release and stability kinetics of volatile components", Food Sci. Nutr., 10(5), 1613-1625. https://doi.org/10.1002/fsn3.2784
  35. Heydarzade, A., Valizadegan, O., Negahban, M. and Mehrkhou, F. (2019), "Efficacy of Mentha spicata and Mentha pulegium essential oil nanoformulation on mortality and physiology of Tribolium castaneum (Col.: Tenebrionidae)", J. Crop Prot., 8(4), 501-520. https://doi.org/20.1001.1.22519041.2019.8.4.9.5 1001.1.22519041.2019.8.4.9.5
  36. Iqbal, H., Jahan, N., Khalil-ur-Rahman, and Jamil, S. (2022), "Formulation and characterisation of Azadirachta indica nanobiopesticides for ecofriendly control of wheat pest Tribolium castaneum and Rhyzopertha dominica", J. Microencapsul., 1-16. https://doi.org/10.1080/02652048.2022.2149870
  37. Kavallieratos, N.G., Nika, E.P., Skourti, A., Ntalli, N., Boukouvala, M.C., Ntalaka, C.T., Maggi, F., Rakotosaona, R., Cespi, M., Perinelli, D.R., Canale, A., Bonacucina, G. and Benelli, G. (2021), "Developing a Hazomalania voyronii essential oil nanoemulsion for the eco-friendly management of Tribolium confusum, Tribolium castaneum and Tenebrio molitor larvae and adults on stored wheat", Molecules, 26(6), 1812. https://doi.org/10.3390/molecules26061812
  38. Kavallieratos, N.G., Nika, E.P., Skourti, A., Xefteri, D.N., Cianfaglione, K., Perinelli, D.R., Spinozzi, E., Bonacucina, G., Canale, A., Benelli, G. and Maggi, F. (2022), "Piperitenone oxide-rich Mentha longifolia essential oil and its nanoemulsion to manage different developmental stages of insect and mite pests attacking stored wheat", Ind. Crops Prod., 178, 114600. https://doi.org/10.1016/j.indcrop.2022.114600
  39. Khamsaw, P., Lumsangkul, C., Karunarathna, A., Onsa, N.E., Kawichai, S., Chuttong, B. and Sommano, S.R. (2022). "Recovery of orange peel essential oil from 'Sai-Namphaung' Tangerine fruit drop biomass and its potential use as citrus fruit postharvest diseases control", Agriculture, 12(5), 701. https://doi.org/10.3390/agriculture12050701
  40. Kim, S.I. and Lee, D.W. (2014), Toxicity of basil and orange essential oils and their components against two coleopteran stored products insect pests. J. Asia Pac. Entomol., 17(1), 13-17. https://doi.org/10.1016/j.aspen.2013.09.002
  41. Klang, V., Matsko, N.B., Valenta, C. and Hofer, F. (2012), "Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment", Micron, 43(2-3), 85-103. https://doi.org/10.1016/j.micron.2011.07.014
  42. Kumar, A.M., Kannan, M. and Nataraj, G. (2020), "A study on performance, emission and combustion characteristics of diesel engine powered by nano-emulsion of waste orange peel oil biodiesel", Renew. Energ., 146, 1781-1795. https://doi.org/10.1016/j.renene.2019.06.168
  43. Kumar, P., Mishra, S., Malik, A. and Satya, S. (2012), "Insecticidal evaluation of essential oils of Citrus sinensis L. (Myrtales: Myrtaceae) against housefly, Musca domestica L.(Diptera: Muscidae)", Parasitol. Res., 110, 1929-1936. https://doi.org/10.1007/s00436-011-2719-3
  44. Laudani, F., Campolo, O., Caridi, R., Latella, I., Modafferi, A., Palmeri, V., Sorgona, A., Zoccali, P. and Giunti, G. (2022), "Aphicidal activity and phytotoxicity of Citrus sinensis essentialoil-based nano-insecticide", Insects, 13(12), 1150. https://doi.org/10.3390/insects13121150
  45. Lima, L.A., Ferreira-Sa, P.S., Garcia Jr, M.D., Pereira, V.L.P., Carvalho, J.C.T., Rocha, L., Fernandes, C.P., Souto, R.N.P., Araujo, R.S., Botas, G. and Cruz, R.A. (2021), "Nanoemulsions of the essential oil of Baccharis reticularia and its constituents as eco-friendly repellents against Tribolium castaneum", Ind. Crops Prod. 162, 113282. https://doi.org/10.1016/j.indcrop.2021.113282
  46. Mahdi, K.R. and Behnam, A.B. (2018), "Fumigant toxicity and repellency effect of orange leaves Citrus sinensis (L.) essential oil on Rhyzopertha dominica and Lasioderma serricorne", J. Essent. Oil-Bear Plants, 21(2), 577-582. https://doi.org/10.1080/0972060X.2018.1442259
  47. Margulis-Goshen, K. and Magdassi, S. (2013), Advanced Technologies for Managing Insect Pests. Springer, Dordrecht, Berlin, Germany. https://doi.org/10.1007/978-94-007-4497-4_15
  48. Menossi, M., Ollier, R.P., Casalongue, C.A. and Alvarez, V.A. (2021), "Essential oil-loaded bio-nanomaterials for sustainable agricultural applications", J. Chem. Technol. Biotechnol., 96(8), 2109-2122. https://doi.org/10.1002/jctb.6705
  49. Mohammed, N. K., Muhialdin, B. J. and Meor Hussin, A.S. (2020), "Characterization of nanoemulsion of Nigella sativa oil and its application in ice cream", Food Sci. Nutr., 8(6), 2608-2618. https://doi.org/10.1002/fsn3.1500
  50. Mohammed, T.G. and Nasr, M.E.H., (2020), "Preparation, characterization and biological efficacy of eucalyptus oil nanoemulsion against the stored grain insects", Asian J. Agric. Res., 13(2), 41-51. https://doi.org/10.9734/AJAAR/2020/v13i230102
  51. Mohanta, V., Mukherjee, I. and Chottopadhyay, J. P. (2021), "Waste product utilization: preparation of candy from orange (Citrus sinensis) peel", Int. J. Agric. Appl. Sci., 2(2),114-119. https://doi.org/10.52804/ijaas2021.2217
  52. Mostafa, D.M., Abd El-Alim, S.H., Asfour, M.H., Al-Okbi, S.Y., Mohamed, D.A. and Awad, G. (2015), "Transdermal nanoemulsions of Foeniculum vulgare Mill. essential oil: Preparation, characterization and evaluation of antidiabetic potential", J. Drug Deliv. Sci. Technol., 29, 99-106. https://doi.org/10.1016/j.jddst.2015.06.021
  53. Mursiti, S., Lestari, N.A., Febriana, Z., Rosanti, Y.M. and Ningsih, T.W. (2019), "The activity of D-limonene from sweet orange peel (Citrus sinensis L.) exctract as a natural insecticide controller of bedbugs (Cimex cimicidae)", Orient. J. Chem., 35(4), 1420. https://doi.org/10.13005/ojc/350424
  54. Norcino, L.B., Mendes, J.F., Natarelli, C.V.L., Manrich, A., Oliveira, J.E. and Mattoso, L.H.C. (2020), "Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging", Food Hydrocoll., 106, 105862. https://doi.org/10.1016/j.foodhyd.2020.105862
  55. Oboh, G., Ademosun, A.O., Olumuyiwa, T.A., Olasehinde, T.A., Ademiluyi, A.O. and Adeyemo, A.C. (2017), "Insecticidal activity of essential oil from orange peels (Citrus sinensis) against Tribolium confusum, Callosobruchus maculatus and Sitophilus oryzae and its inhibitory effects on acetylcholinesterase and Na+/K+-ATPase activities", Phytoparasitica, 45, 501-508. https://doi.org/10.1007/s12600-017-0620-z
  56. Omran, B.A., Nassar, H.N., Fatthallah, N.A., Hamdy, A., El-Shatoury, E.H. and El-Gendy, N.S. (2018), "Waste upcycling of Citrus sinensis peels as a green route for the synthesis of silver nanoparticles", Energy Sources A: Recovery Util. Environ. Eff., 40(2), 227-236. https://doi.org/10.1080/15567036.2017.1410597
  57. Oppert, B., Muszewska, A., Steczkiewicz, K., Satovic-Vuksic, E., Plohl, M., Fabrick, J.A., Vinokurov, K.S., Koloniuk, I., Johnston, J.S., Smith, T.P.L., Guedes, R.N.C., Terra, W.R., Ferreira, C., Dias, R.O., Chaply, K.A., Elpidina, E.N., Tereshchenkova, V.F., Mitchell, R.F., Jenson, A.J., McKay, R., Shan, T., Cao, X., Miao, Z., Xiong, C., Jiang, H., Morrison, W.R., Koren, S., Schlipalius, D., Lorenzen, M.D., Bansal, R., Wang, Y.H., Perkin, L., Poelchau, M., Friesen, K., Olmstead, M.L., Scully, E. and Campbell, J.F. (2022), "The genome of Rhyzopertha dominica (Fab.)(Coleoptera: Bostrichidae): adaptation for success", Genes, 13(3), 446. https://doi.org/10.3390/genes13030446
  58. Ortega, D.S., Bacca, T., Silva, A.P.N., Canal, N.A. and Haddi, K. (2021), "Control failure and insecticides resistance in populations of Rhyzopertha dominica (Coleoptera: Bostrichidae) from Colombia", J. Stored Prod. Res., 92, 101802. https://doi.org/10.1016/j.jspr.2021.101802
  59. Osanloo, M., Amani, A., Sereshti, H., Abai, M.R., Esmaeili, F. and Sedaghat, M.M. (2017), "Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi", Ind. Crops Prod., 109, 214-219. https://doi.org/10.1016/j.indcrop.2017.08.037
  60. Osanloo, M., Firooziyan, S., Abdollahi, A., Hatami, S., Nematollahi, A., Elahi, N. and Zarenezhad, E. (2022), "Nanoemulsion and nanogel containing Artemisia dracunculus essential oil, larvicidal effect and antibacterial activity", BMC Res. Notes., 15, 276. https://doi.org/10.1186/s13104-022-06135-8
  61. Oyedeji, A.O., Okunowo, W.O., Osuntoki, A.A., Olabode, T.B. and Ayo-Folorunso, F. (2020), "Insecticidal and biochemical activity of essential oil from Citrus sinensis peel and constituents on Callosobrunchus maculatus and Sitophilus zeamais", Pestic. Biochem. Physiol., 168, 104643. https://doi.org/10.1016/j.pestbp.2020.104643
  62. Ozogul, Y., Karsli, G.T., Durmus, M., Yazgan, H., Oztop, H.M., McClements, D.J. and Ozogul, F. (2022), "Recent developments in industrial applications of nanoemulsions", Adv. Colloid Interf. Sci., 102685. https://doi.org/10.1016/j.cis.2022.102685
  63. Panwar, D., Saini, A., Panesar, P.S. and Chopra, H.K. (2021), "Unraveling the scientific perspectives of citrus by-products utilization: Progress towards circular economy", Trends Food Sci. Technol., 111, 549-562. https://doi.org/10.1016/j.tifs.2021.03.018
  64. Papanikolaou, N.E., Kavallieratos, N.G., Iliopoulos, V., Evergetis, E., Skourti, A., Nika, E.P. and Haroutounian, S.A. (2022), "Essential oil coating: Mediterranean culinary plants as grain protectants against larvae and adults of Tribolium castaneum and Trogoderma granarium", Insects, 13(2), 165. https://doi.org/10.3390/insects13020165
  65. Patino-Portela, M.C., Arciniegas-Grijalba, P.A., Mosquera-Sanchez, L.P., Sierra, B.E.G., Munoz-Florez, J.E., Erazo-Castillo, L.A. and Rodriguez-Paez, J.E. (2021), "Effect of method of synthesis on antifungal ability of ZnO nanoparticles: chemical route vs green route", Adv. Nano Res., 10(2), 191-210. https://doi.org/10.12989/anr.2021.10.2.191
  66. Rochin-Wong, S., Rosas-Durazo, A., Zavala-Rivera, P., Maldonado, A., Martinez-Barbosa, M. E., Velaz, I. and Tanori, J. (2018), "Drug release properties of diflunisal from layer-by-layer self-assembled κ-carrageenan/chitosan nanocapsules: Effect of deposited layers", Polymers, 10(7), 760. https://doi.org/10.3390/polym10070760
  67. Shan, Y. (2016), Comprehensive Utilization of Citrus By-Products, Academic Press, London, U.K.
  68. Sharma, S., Loach, N., Gupta, S. and Mohan, L. (2020), "Phytonanoemulsion: An emerging nano-insecticidal formulation", Environ. Nanotechnol. Monit. Manag., 14, 100331. https://doi.org/10.1016/j.enmm.2020.100331
  69. Sheikh, M., Mehnaz, S. and Sadiq, M.B. (2021), "Prevalence of fungi in fresh tomatoes and their control by chitosan and sweet orange (Citrus sinensis) peel essential oil coating", J. Sci. Food Agric., 101(15), 6248-6257. https://doi.org/10.1002/jsfa.11291
  70. Siddiqui, S.A., Pahmeyer, M.J., Assadpour, E. and Jafari, S.M. (2022), "Extraction and purification of d-limonene from orange peel wastes: Recent advances", Ind. Crops Prod., 177, 114484. https://doi.org/10.1016/j.indcrop.2021.114484
  71. Sogan, N., Kala, S., Kapoor, N., Singh, H., Verma, P., Nautiyal, A. and Nagpal, B.N. (2023), "Utilization and re-use of orange peel derived oil by formulating nanoemulsion for efficient vector control application", Waste Biomass Valor., 1-13. https://doi.org/10.1007/s12649-023-02094-8
  72. Somala, N., Laosinwattana, C. and Teerarak, M. (2022), "Formulation process, physical stability and herbicidal activities of Cymbopogon nardus essential oil-based nanoemulsion", Sci. Rep., 12,10280. https://doi.org/10.1038/s41598-022-14591-2
  73. Sugumar, S., Singh, S., Mukherjee, A. and Chandrasekaran, N. (2016), "Nanoemulsion of orange oil with non ionic surfactant produced emulsion using ultrasonication technique: evaluating against food spoilage yeast", Appl. Nanosci., 6, 113-120. https://doi.org/10.1007/s13204-015-0412-z
  74. Sun, J.S., Feng, Y., Wang, Y., Li, J., Zou, K., Liu, H., Hu, Y., Xue, Y., Yang, L., Du, S. and Wu, Y. (2020), "α-pinene, caryophyllene and β-myrcene from Peucedanum terebinthaceum essential oil: Insecticidal and repellent effects on three stored-product insects", Rec. Nat. Prod., 14(3), 189. https://doi.org/10.25135/rnp.149.19.05.1287
  75. Tandorost, R. and Karimpour, Y. (2012), "Evaluation of fumigant toxicity of orange peel Citrus sinensis (L.) essential oil against three stored product insects in laboratory condition", Mun. Ent. Zool., 7(1), 352-358.
  76. Tripathi, A. K., Prajapati, V., Khanuja, S.P.S. and Kumar, S. (2003), "Effect of d-limonene on three stored-product beetles", J. Econ. Entomol., 96(3), 990-995. https://doi.org/10.1093/jee/96.3.990
  77. Van Dat, D., Van Cuong, N., Le, P.H.A., Anh, T.T.L., Viet, P.T. and Huong, N.T.L. (2020), "Orange peel essential oil nanoemulsions supported by nanosilver for antibacterial application", Indones. J. Chem., 20(2), 430-439. https://doi.org/10.22146/ijc.46042
  78. Victor, M.M., David, J.M., Cortez, M.V.M., Leite, J.L. and da Silva, G.S.B. (2021), "A high-yield process for extraction of hesperidin from orange (Citrus sinensis L. osbeck) peels waste, and its transformation to diosmetin, A valuable and bioactive flavonoid", Waste Biomass Valor., 12, 313-320. https://doi.org/10.1007/s12649-020-00982-x
  79. Wang, K., Liu, M., Wang, Y., Song, W. and Tang, P. (2020), "Identification and functional analysis of cytochrome P450 CYP346 family genes associated with phosphine resistance in Tribolium castaneum", Pestic. Biochem. Physiol., 168, 104622. https://doi.org/10.1016/j.pestbp.2020.104622
  80. Yun, D. and Liu, J. (2022), "Recent advances on the development of food packaging films based on citrus processing wastes: A review", J. Agric. Food Sci., 100316. https://doi.org/10.1016/j.jafr.2022.100316
  81. Zewde, D.K. and Jembere, B. (2010), "Evaluation of orange peel Citrus sinensis (L) as a source of repellent, toxicant and protectant against Zabrotes subfasciatus (Coleoptera: bruchidae)", Momona Ethiop. J. Sci., 2(1), 61-75. https://doi.org/10.4314/mejs.v2i1.49652