DOI QR코드

DOI QR Code

Nonlinear vibration analysis of FG porous shear deformable cylindrical shells covered by CNTs-reinforced nanocomposite layers considering neutral surface exact position

  • Zhihui Liu (College of Mechanical and Energy Engineering, Shaoyang University) ;
  • Kejun Zhu (College of Mechanical and Energy Engineering, Shaoyang University) ;
  • Xue Wen (College of Mechanical and Energy Engineering, Shaoyang University) ;
  • Abhinav Kumar (Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin)
  • 투고 : 2023.10.08
  • 심사 : 2024.07.16
  • 발행 : 2024.07.25

초록

This paper presents nonlinear vibration analysis of a composite cylindrical shell. The core of the shell is made of functionally graded (FG) porous materials and layers is fabricated of carbon nanotubes (CNTs) reinforced nanocomposites. To increase the accuracy of results, neutral surface position is considered. First-order shear deformation theory is used as displacement field to derive the basic relations of equation motions. In addition, von-Karman nonlinear strains are employed to account geometric nonlinearity and to enhance the results' precision, the exact position of the neutral surface is considered. To governing the partial equations of motion, the Hamilton's principle is used. To reduce the equation motions into a nonlinear motion equation, the Galerkin's approach is employed. After that the nonlinear motion equation is solved by multiple scales method. Effect of various parameters such as volume fraction and distribution of CNTs along the thickness directions, different patterns and efficiency coefficients of porous materials, geometric characteristics and initial conditions on nonlinear to linear ratio of frequency is investigated.

키워드

과제정보

Hunan Provincial Department of Education Project (22A0535, 20B534), Hunan Natural Science Foundation Project (2023JJ50265, 2021JJ30631), Shaoyang Science and Technology Plan Project (2022GZ1007,2021GZ040).

참고문헌

  1. Al-Osta, M.A., Saidi, H., Tounsi, A., Al-Dulaijan, S.U., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2021), "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart Struct. Syst., 28(4), 499-513. https://doi.org/10.12989/SSS.2021.28.4.499.
  2. Alhaifi, K., Khorshidvand, A.R., Al-Masoudy, M.M., Arshid, E. and Madani, S.H. (2023), "A shooting method for buckling and post-buckling analyses of FGSP circular plates considering various patterns of Pores' placement", Struct. Eng. Mech., 85(3), 419-432. https://doi.org/10.12989/sem.2023.85.3.419.
  3. Alibeigloo, A. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity", Compos. Struct., 95, 612-622. https://doi.org/10.1016/j.compstruct.2012.08.018.
  4. Allahkarami, F., Nikkhah-bahrami, M. and Saryazdi, M.G. (2018), "Magneto-thermo-mechanical dynamic buckling analysis of a FG-CNTs-reinforced curved microbeam with different boundary conditions using strain gradient theory", Int. J. Mech. Mater. Des., 14(2), 243-261. https://doi.org/10.1007/s10999-017-9374-5.
  5. Amir, S., Arshid, E. and Maraghi, Z.K. (2020a), "Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium", Smart Struct. Syst., 25(5), 581-592. https://doi.org/10.12989/sss.2020.25.5.581.
  6. Amir, S., Arshid, E., Rasti-Alhosseini, S.M.A. and Loghman, A. (2020b), "Quasi-3D tangential shear deformation theory for size-dependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment", J. Therm. Stress., 43(2), 133-156. https://doi.org/10.1080/01495739.2019.1660601.
  7. Aragh, B.S., Barati, A.H.N. and Hedayati, H. (2012), "Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels", Compos. Part B Eng., 43(4), 1943-1954. https://doi.org/10.1016/j.compositesb.2012.01.004.
  8. Arefi, M., Bidgoli, E.M.R. and Zenkour, A.M. (2018a), "Sizedependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", Smart Struct. Syst., 22(1), 27-40. https://doi.org/10.12989/sss.2018.22.1.027.
  9. Arefi, M., Mohammad-Rezaei Bidgoli, E., Dimitri, R. and Tornabene, F. (2018b), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aerosp. Sci. Technol., 81, 108-117. https://doi.org/10.1016/J.AST.2018.07.036.
  10. Arefi, M., Mohammad-Rezaei Bidgoli, E. and Rabczuk, T. (2019a), "Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST", Eur. J. Mech. A Solids, 77, 103802. https://doi.org/10.1016/j.euromechsol.2019.103802.
  11. Arefi, M., Mohammad-Rezaei Bidgoli, E. and Rabczuk, T. (2019b), "Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT", Thin Wall. Struct., 142, 444-459. https://doi.org/10.1016/j.tws.2019.04.054.
  12. Arshid, E., Soleimani-Javid, Z., Amir, S. and Duc, N.D. (2022), "Higher-order hygro-magneto-electro-thermomechanical analysis of FG-GNPs-reinforced composite cylindrical shells embedded in PEM layers", Aerosp. Sci. Technol., 126, 107573. https://doi.org/10.1016/j.ast.2022.107573.
  13. Arshid, E., Amir, S. and Loghman, A. (2023a), "Thermoelastic vibration characteristics of asymmetric annular porous reinforced with nano-fillers microplates embedded in an elastic medium: CNTs Vs. GNPs", Arch. Civil Mech. Eng., 23(2), 100. https://doi.org/10.1007/s43452-023-00624-8.
  14. Arshid, E., Amir, S. and Loghman, A. (2023b), "On the vibrations of FG GNPs-RPN annular plates with piezoelectric/metallic coatings on Kerr elastic substrate considering size dependency and surface stress effects", Acta Mechanica, 1-42. https://doi.org/10.1007/s00707-023-03593-4.
  15. Arshid, E., Ghorbani, M.A., Momeni Nia, M.J., Civalek, O . and Kumar, A. (2023c), "Thermo-elastic buckling behaviors of advanced fluid-infiltrated porous shells integrated with GPLsreinforced nanocomposite patches", Mech. Adv. Mater. Struct., 1-17. https://doi.org/10.1080/15376494.2023.2251015.
  16. Arshid, E., Momeni Nia, M.J., Ghorbani, M.A., Civalek, O . and Kumar, A. (2023d), "On the poroelastic vibrations of lightweight FGSP doubly-curved shells integrated with GNPsreinforced composite coatings in thermal atmospheres", Appl. Math. Modell., 124, 122-141. https://doi.org/10.1016/j.apm.2023.07.036.
  17. Arshid, E., Amir, S. and Loghman, A. (2024a), "Aero-Hygro-Thermoelastic size-dependent analysis of NCMF-reinforced GNPs sector microplates located between piezoelectric patches in supersonic flow considering surface stress effects", Mech. Based Des. Struct., 1-62. https://doi.org/10.1080/15397734.2023.2295532.
  18. Arshid, E., Amir, S., Loghman, A. and Civalek, O . (2024b), "Aerodynamic stability and free vibration of fgp-reinforced nano-fillers annular sector microplates exposed to supersonic flow", Thin Wall Struct., 111610. https://doi.org/10.1016/j.tws.2024.111610.
  19. Arshid, E., Azimi, M., Moradi, M., El Ouni, M. H. and Alashker, Y. (2024c), "Mathematical solution for vibrational response of shear and normal deformable advanced metal foam cmbs treated with nanocomposite actuators", Int. J. Struct. Stabil. Dyn., https://doi.org/10.1142/S0219455425501184.
  20. Babaei, M., Asemi, K. and Safarpour, P. (2019), "Buckling and static analyses of functionally graded saturated porous thick beam resting on elastic foundation based on higher order beam theory", Iranian J. Mech. Eng. Transact. ISME, 20(1), 94-112.
  21. Babaei, M., Hajmohammad, M. H. and Asemi, K. (2020), "Natural frequency and dynamic analyses of functionally graded saturated porous annular sector plate and cylindrical panel based on 3D elasticity", Aerosp. Sci. Technol., 96, 105524. https://doi.org/10.1016/j.ast.2019.105524.
  22. Babaei, H. and Eslami, M.R. (2021), "On nonlinear vibration and snap-through buckling of long FG porous cylindrical panels using nonlocal strain gradient theory", Compos. Struct., 256, 113125. https://doi.org/10.1016/j.compstruct.2020.113125.
  23. Babaei, M. and Asemi, K. (2022), "Stress analysis of functionally graded saturated porous rotating thick truncated cone", Mech. Based Des. Struct., 50(5), 1537-1564. https://doi.org/10.1080/15397734.2020.1753536.
  24. Babaei, M., Kiarasi, F., Tehrani, M.S., Hamzei, A., Mohtarami, E. and Asemi, K. (2022), "Three dimensional free vibration analysis of functionally graded graphene reinforced composite laminated cylindrical panel", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 236(8), 1501-1514. https://doi.org/10.1177/14644207211073445.
  25. Babaei, H., Zavari, S., Kaveh, A., Arshid, E. and Civalek, O. (2024), "Dynamic response of advanced lightweight porous plates integrated with nanocomposite face sheets resting on elastic substrate", Int. J. Struct. Stabil. Dyn., Online Ready. https://doi.org/10.1142/S0219455425501329.
  26. Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  27. Bi, R., Gao, J. and Allahyari, S. (2021), "Higher order plate theory for buckling analysis of plates based on exact solution", Steel Compos. Struct., 40(3), 459. https://doi.org/10.12989/SCS.2021.40.3.451.
  28. Bi, S., Zhang, E., Babaei, M., Tornabene, F. and Dimitri, R. (2023), "The influence of GPL reinforcements on the postbuckling behavior of FG porous rings subjected to an external pressure", Mathematics, 11(11), 2421. https://doi.org/10.3390/math11112421.
  29. Bidgoli, E.M.R. and Arefi, M. (2023), "Effect of porosity and characteristics of carbon nanotube on the nonlinear characteristics of a simply-supported sandwich plate", Arch. Civil Mech. Eng., 23(3), 214. https://doi.org/10.1007/s43452-023-00752-1.
  30. Bidgoli, E.M.R., Arefi, M. and Mohammadimehr, M. (2022), "Free vibration analysis of honeycomb doubly curved shell integrated with CNT-reinforced piezoelectric layers", Mech. Based Des. Struct., 50(12), 4409-4440. https://doi.org/10.1080/15397734.2020.1836969.
  31. Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.
  32. Das, Y.C. (1964), "Vibrations of orthotropic cylindrical shells", Appl. Sci. Res. A, 12(4-5), 317-326. https://doi.org/10.1007/BF03185004.
  33. Dehghan, M., Ebrahimi, F. and Vinyas, M. (2020), "Wave dispersion characteristics of fluid-conveying magneto-electroelastic nanotubes", Eng. Comput., 36(4), 1687-1703. https://doi.org/10.1007/s00366-019-00790-5.
  34. Djilali, N., Bousahla, A.A., Kaci, A., Selim, M.M., Bourada, F., Tounsi, A., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2022), "Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT", Steel Compos. Struct., 42(6), 779-789. https://doi.org/10.12989/SCS.2022.42.6.779.
  35. Dong, S.B. (1968), "Free vibration of laminated orthotropic cylindrical shells", J. Acoust. Soc. Am., 44(6), 1628-1635. https://doi.org/10.1121/1.1911306.
  36. Dzung, N.M., Tan, N.C., Ha, N.H., Tien, N.D., Eslami, H. and Ninh, D.G. (2024), "Effects of edge-crack orientation and depth on non-linear dynamics of laminated nanocomposite singlevariable-edge plates", Eng. Struct., 304, 117553. https://doi.org/10.1016/j.engstruct.2024.117553.
  37. Forsat, M., Musharavati, F., Eltai, E., Zain, A.M., Mobayen, S. and Mohamed, A.M. (2021), "Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches", Adv. Nano Res., 11(2), 140. https://doi.org/10.12989/ANR.2021.11.2.115.
  38. Gao, Q., Ding, Z. and Liao, W.H. (2022), "Effective elastic properties of irregular auxetic structures", Compos. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269.
  39. Ha, N.H., Tan, N.C., Dzung, N.M., Long, N.T., Quan, N.M., Eslami, H. and Ninh, D.G. (2024), "A new study for dynamical characteristics of double-variable-edge and variable thickness plates made of open-cell porous metal", Aerosp. Sci. Technol., 145, 108830. https://doi.org/10.1016/j.ast.2023.108830.
  40. Han, Q., Li, X. and Chu, F. (2018), "Skidding behavior of cylindrical roller bearings under time-variable load conditions", Int. J. Mech. Sci., 135, 203-214. https://doi.org/10.1016/j.ijmecsci.2017.11.013.
  41. Hou, Y., Choi, K.R., Ghazouani, N., Kaveh, A., Babaei, Z. and Kumar, A. (2023), "Static package design thorough thickness stretching and thermal environment effects for porous microscaled plates with piezoelectric nanocomposite patches", Acta Mechanica, 235(2), 1235-1254. https://doi.org/10.1007/S00707-023-03794-X/METRICS.
  42. Jalaei, M.H. and Civalek, (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  43. Jam, J.E., Pourasghar, A. and Kamarian, S. (2012), "Effect of the aspect ratio and waviness of carbon nanotubes on the vibrational behavior of functionally graded nanocomposite cylindrical panels", Polym. Compos., 33(11), 2036-2044. https://doi.org/10.1002/pc.22346.
  44. Jeyaraj, P. and Rajkumar, I. (2013), "Static behavior of FG-CNT polymer nano composite plate under elevated non-uniform temperature fields", Procedia Eng., 64, 825-834. https://doi.org/10.1016/j.proeng.2013.09.158.
  45. Kalamkarov, A.L., Georgiades, A.V., Rokkam, S.K., Veedu, V.P. and Ghasemi-Nejhad, M.N. (2006), "Analytical and numerical techniques to predict carbon nanotubes properties", Int. J. Solid Struct., 43(22-23), 6832-6854. https://doi.org/10.1016/j.ijsolstr.2006.02.009.
  46. Kargar, J., Ghorbanpour Arani, A., Arshid, E. and Irani Rahaghi, M. (2021), "Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation", Struct. Eng. Mech., 78(5), 572. https://doi.org/10.12989/SEM.2021.78.5.557.
  47. Kaveh, A., Babaei, H., Zavari, S., Arshid, E. and Civalek, O . (2024), "Vibrational response of a sandwich microplate considering the impact of flexoelectricity and based on a novel porous-FGM formulation", Mech. Based Des. Struct., 1-22. https://doi.org/10.1080/15397734.2024.2337913.
  48. Khoddami Maraghi, Z., Amir, S. and Arshid, E. (2022), "On the natural frequencies of smart circular plates with magnetorheological fluid core embedded between magnetostrictive patches on Kerr elastic substance", Mech. Based Des. Struct., 1-18. https://doi.org/10.1080/15397734.2022.2156885.
  49. Khoddami Maraghi, Z. and Arshid, E. (2024), "On the vibrational behavior of variable thickness FG porous beams with graphenereinforced nanocomposite facesheets", Acta Mechanica, https://doi.org/10.1007/s00707-024-03987-y.
  50. Kiani, Y., Shakeri, M. and Eslami, M.R. (2012), "Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace-Fourier transformation", Acta Mechanica, 223(6), 1199-1218. https://doi.org/10.1007/s00707-012-0629-9.
  51. Kiarasi, F., Babaei, M., Dimitri, R. and Tornabene, F. (2020), "Hygrothermal modeling of the buckling behavior of sandwich plates with nanocomposite face sheets resting on a Pasternak foundation", Continuum Mech. Thermodyn., 1-22. https://doi.org/10.1007/s00161-020-00929-6.
  52. Kiarasi, F., Babaei, M., Mollaei, S., Mohammadi, M. and Asemi, K. (2021), " Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets", Adv. Nano Res., 11(4), 380. https://doi.org/10.12989/ANR.2021.11.4.361.
  53. Liu, B., Xing, Y.F., Qatu, M.S. and Ferreira, A.J.M. (2012), "Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells", Compos. Struct., 94(2), 484-493. https://doi.org/10.1016/j.compstruct.2011.08.012.
  54. Malekzadeh, P. and Shojaee, M. (2013), "Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers", Thin Wall. Struct., 71, 108-118. https://doi.org/10.1016/j.tws.2013.05.008.
  55. Mao, J.J. and Zhang, W. (2019), "Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces", Compos. Struct., 216, 392-405. https://doi.org/10.1016/j.compstruct.2019.02.095.
  56. Mindlin, R.D. (1968), "Polarization gradient in elastic dielectrics", Int. J. Solids Struct., 4(6), 637-642. https://doi.org/10.1016/0020-7683(68)90079-6.
  57. Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S., Hamouda, A.M.S., Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020a), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 156. https://doi.org/10.12989/ANR.2020.8.2.149.
  58. Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M. R., Hamouda, A.M.S., Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020b), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 58. https://doi.org/10.12989/ANR.2020.9.1.047.
  59. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2019), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified straingradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302.
  60. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2023a), "Nonlinear vibration analysis of sandwich plates with honeycomb core and graphene nanoplatelet-reinforced face-sheets", Arch. Civil Mech. Eng., 23(1), 56. https://doi.org/10.1007/s43452-022-00589-0.
  61. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2023b), "Sizedependent thermomechanical critical loads of GPL-reinforced nanobeams", Waves Random Complex Med., 1-21. https://doi.org/10.1080/17455030.2023.2169385.
  62. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2023c), "Dynamic results of GNPRC sandwich shells", Steel Compos. Struct., 48(3), 273. https://doi.org/10.12989/SCS.2023.48.3.263.
  63. Mohammadimehr, M., Salemi, M. and Rousta Navi, B. (2016), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermomechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055.
  64. Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683.
  65. Mousavi, S.B., Amir, S., Jafari, A. and Arshid, E. (2021), "Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories", Adv. Nano Res., 10(3), 235-251. https://doi.org/10.12989/anr.2021.10.3.235.
  66. Ni, Y., Sun, J., Zhang, J., Tong, Z., Zhou, Z. and Xu, X. (2023), "Accurate buckling analysis of magneto-electro-elastic cylindrical shells subject to hygro-thermal environments", Appl. Math. Modell., 118, 798-817. https://doi.org/10.1016/j.apm.2023.02.015.
  67. Ninh, D.G. and Bich, D.H. (2016), "Nonlinear torsional buckling and post-buckling of eccentrically stiffened ceramic functionally graded material metal layer cylindrical shell surrounded by elastic foundation subjected to thermo-mechanical load", J. Sandw. Struct. Mater., 18(6), 712-738. https://doi.org/10.1177/1099636216644787.
  68. Ninh, D.G., Ha, N.H., Long, N.T., Tan, N.C., Tien, N.D. and Dao, D.V. (2023), "Thermal vibrations of complex-generatrix shells made of sandwich CNTRC sheets on both sides and open/closed cellular functionally graded porous core", Thin Wall. Struct., 182, 110161. https://doi.org/10.1016/j.tws.2022.110161.
  69. Paul, R., Kumbhakar, P. and Mitra, A.K. (2013), "A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite", Adv. Nano Res., 1(2), 71-82. https://doi.org/10.12989/anr.2013.1.2.071.
  70. Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, In Vibration of Laminated Shells and Plates, Elsevier. https://doi.org/10.1016/B978-0-08-044271-6.X5000-5.
  71. Qatu, M.S., Sullivan, R.W. and Wang, W. (2010), "Recent research advances on the dynamic analysis of composite shells: 2000-2009", Compos. Struct., 93(1), 14-31. https://doi.org/10.1016/j.compstruct.2010.05.014.
  72. Qin, B., Wang, Q., Zhong, R., Zhao, X. and Shuai, C. (2020), "A three-dimensional solution for free vibration of FGP-GPLRC cylindrical shells resting on elastic foundations: a comparative and parametric study", Int. J. Mech. Sci., 187, 105896. https://doi.org/10.1016/j.ijmecsci.2020.105896.
  73. Quang, V.D., Khoa, N.D. and Duc, N.D. (2021), "The effect of structural characteristics and external conditions on the dynamic behavior of shear deformable FGM porous plates in thermal environment", J. Mech. Sci. Technol., 35(8), 3323-3329. https://doi.org/10.1007/S12206-021-0706-X/METRICS.
  74. Radic, N. (2018), "On buckling of porous double-layered FG nanoplates in the Pasternak elastic foundation based on nonlocal strain gradient elasticity", Compos. Part B Eng., 153, 465-479. https://doi.org/10.1016/j.compositesb.2018.09.014.
  75. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  76. Shen, H.S. and Xiang, Y. (2014), "Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Compos. Struct., 111, 291-300. https://doi.org/10.1016/j.compstruct.2014.01.010.
  77. Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells", Compos. Struct., 93(8), 2096-2108. https://doi.org/10.1016/j.compstruct.2011.02.011.
  78. Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Meth. Appl. Mech. Eng., 213-216(8), 196-205. https://doi.org/10.1016/j.cma.2011.11.025.
  79. Shen, H.S. (2013), "Thermal buckling and postbuckling of functionally graded fiber-reinforced composite laminated plates", J. Compos. Mater., 47(22), 2783-2795. https://doi.org/10.1177/0021998312458131.
  80. Shen, H.S. and Xiang, Y. (2013), "Postbuckling of nanotubereinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment", Compos. Part B Eng., 52, 311-322. https://doi.org/10.1016/j.compositesb.2013.04.034.
  81. Shen, H.S., Xiang, Y. and Fan, Y. (2017a), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments", Compos. Struct., 182, 447-456. https://doi.org/10.1016/j.compstruct.2017.09.010.
  82. Shen, H.S., Xiang, Y. and Fan, Y. (2017b), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments", Compos. Struct., 182, 447-456. https://doi.org/10.1016/j.compstruct.2017.09.010.
  83. Shen, X., Li, T., Xu, L., Kiarasi, F., Babaei, M. and Asemi, K. (2024), "Free vibration analysis of FG porous spherical cap reinforced by graphene platelet resting on Winkler foundation", Adv. Nano Res., 16(1), 26. https://doi.org/10.12989/ANR.2024.16.1.011.
  84. Sivadas, K.R. and Ganesan, N. (1991), "Vibration analysis of laminated conical shells with variable thickness", J. Sound Vib., 148(3), 477-491. https://doi.org/10.1016/0022-460X(91)90479-4.
  85. Sobhani, E., Masoodi, A. R., Civalek, O . and Avcar, M. (2022), "Natural frequency analysis of FG-GOP/ polymer nanocomposite spheroid and ellipsoid doubly curved shells reinforced by transversely-isotropic carbon fibers", Eng. Anal. Bound. Elem., 138, 369-389. https://doi.org/10.1016/j.enganabound.2022.03.009.
  86. Soleimani-Javid, Z., Arshid, E., Khorasani, M., Amir, S. and Tounsi, A. (2021), "Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions", Adv. Nano Res., 10(5), 449-460. https://doi.org/10.12989/anr.2021.10.5.449.
  87. Su, Y., Shen, Z., Long, X., Chen, C., Qi, L. and Chao, X. (2023), "Gaussian filtering method of evaluating the elastic/elastoplastic properties of sintered nanocomposites with quasicontinuous volume distribution", Mater. Sci. Eng. A, 872, 145001. https://doi.org/10.1016/j.msea.2023.145001.
  88. Sun, L., Wang, G. and Zhang, C. (2024), "Experimental investigation of a novel high performance multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid damper", J. Intell. Mater. Syst. Struct., 35(6), 661-672. https://doi.org/10.1177/1045389X231222999.
  89. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  90. Taj, K., Akturk, B. and Ulukaya, S. (2022), "Fresh state properties and compressive strength development of reactive MgO-based systems", Mater. Today Proc., 65, 1064-1069. https://doi.org/10.1016/j.matpr.2022.04.143.
  91. Taj, K., Akturk, B. and Ulukaya, S. (2023a), "Influence of carbonation curing and nano-silica incorporation on compressive strength and micro-structural development of binary RMCbased systems", J. Build. Eng., 66, 105856. https://doi.org/10.1016/j.jobe.2023.105856.
  92. Taj, K., Ilcan, H., Teksin, E., Argin, G., Ardoga, M.K., Uzal, B. and Sahmaran, M. (2023b), "Effect of duration and type of grinding on the particle size distribution and microstructure of natural pumice with low pozzolanic reactivity", Powder Technol., 428, 118839. https://doi.org/10.1016/j.powtec.2023.118839.
  93. Tian, R., Wang, M., Zhang, Y., Jing, X. and Zhang, X. (2024), "A concave X-shaped structure supported by variable pitch springs for low-frequency vibration isolation", Mech. Syst. Signal Pr., 218, 111587. https://doi.org/10.1016/j.ymssp.2024.111587.
  94. Tien, N.D., Hoang, V.N.V., Ninh, D.G., Huy, V.L. and& Hung, N.C. (2021), "Nonlinear dynamics and chaos of a nanocomposite plate subjected to electro-thermo-mechanical loads using Flugge-Lur'e-Bryrne theory", J. Vib. Control, 27(9-10), 1184-1197. https://doi.org/10.1177/1077546320938185.
  95. Vronay, D. F. and Smith, B. L. (1970), "Free vibration of circular cylindrical shells of finite length", AIAA J., 8(3), 601-603. https://doi.org/10.2514/3.5726.
  96. Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Compos. Part B Eng., 43(2), 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040.
  97. Wang, H., Han, Q. and Zhou, D. (2017), "Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings", Mech. Syst. Signal Pr., 85, 16-40. https://doi.org/10.1016/j.ymssp.2016.07.049.
  98. Wang, Y.Q., Liu, Y.F. and Zu, J.W. (2019), "Size-dependent vibration of circular cylindrical polymeric microshells reinforced with graphene platelets", Int. J. Appl. Mech., 11(4). https://doi.org/10.1142/S1758825119500364.
  99. Wang, W., Jin, Y., Mu, Y., Zhang, M. and Du, J. (2023), "A novel tubular structure with negative Poisson's ratio based on gyroidtype triply periodic minimal surfaces", Virt. Phys. Prototyp., 18(1). https://doi.org/10.1080/17452759.2023.2203701.
  100. Yas, M.H., Pourasghar, A., Kamarian, S. and Heshmatia, M. (2013), "Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube", Mater. Des., 49, 583-590. https://doi.org/10.1016/j.matdes.2013.01.001.
  101. Zavari, S., Kaveh, A., Babaei, H., Arshid, E., Dimitri, R. and Tornabene, F. (2024), "A quasi-3D hyperbolic formulation for the buckling study of metal foam microplates layered with graphene nanoplatelets-embedded nanocomposite patches with temperature fluctuations", Compos. Struct., 117876. https://doi.org/10.1016/j.compstruct.2024.117876.
  102. Zeng, S., Wang, B.L. and Wang, K.F. (2019), "Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect", Compos. Struct., 207, 340-351. https://doi.org/10.1016/j.compstruct.2018.09.040.
  103. Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B Eng., 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087.