References
- Bahrami, M.R. and Hatami, S. (2016), "Free and forced transverse vibration analysis of moderately thick orthotropic plates using spectral finite element method", J. Solid Mech., 8(4), 895-915. https://doi.org/20.1001.1.20083505.2016.8.4.15.9. 1001.1.20083505.2016.8.4.15.9
- Barati, A., Hadi, A., Nejad, M.Z. and Noroozi, R. (2022), "On vibration of bi-directional functionally graded nanobeams under magnetic field", Mech. Based Des Struct. Mach., 50(2), 468-485. https://doi.org/10.1080/15397734.2020.1719507.
- Boscolo, M. and Banerjee, J.R. (2011), "Dynamic stiffness elements and their applications for plates using first order shear deformation theory", Comput. Struct., 89(3-4), 395-410. https://doi.org/10.1016/j.compstruc.2010.11.005.
- Cheung, Y.K. (1968), "The finite strip method in the analys of elastic plates with two opposite simply supported ends", Proceedings of the Institution of Civil Engineers, 40(1), 1-7. https://doi.org/10.1680/iicep.1968.7709
- Chiker, Y., Bachene, M., Attaf, B., Hafaifa, A. and Guemana, M. (2023), "Uncertainty influence of nanofiller dispersibilities on the free vibration behavior of multi-layered functionally graded carbon nanotube-reinforced composite laminated plates", Acta Mechanica, 234, 1687-1711. https://doi.org/10.1007/s00707-022-03438-6.
- Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018), "Modal analysis of FG sandwich doubly curved shell structure. Structural Engineering and Mechanics", Struct. Eng. Mech., 68(6), 721-733. https://doi.org/10.12989/sem.2018.68.6.721.
- Eghbali, M. and Hosseini, S.A. (2023), "On moving harmonic load and dynamic response of carbon nanotube-reinforced composite beams using higher-order shear deformation theories", Mech. Adv. Compos. Struct., 10(2), 257-270. https://doi.org/10.22075/MACS.2022.28205.1431.
- El Meiche, N., Tounsi, A., Ziane, N. and Mechab, I. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004.
- Gao, W., Liu, Y., Qin, Z. and Chu, F. (2022), "Wave propagation in smart sandwich plates with functionally graded nanocomposite porous core and piezoelectric layers in multi-physics environment", Int. J. Appl. Mech., 14(7), 2250071. https://doi.org/10.1142/S1758825122500715.
- Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Sahoo, R. (2022), "Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore", Thin Wall. Struct., 170, 108626. https://doi.org/10.1016/j.tws.2021.108626.
- Gholami, M., Gorji Azandariani, M., Najat Ahmed, A. and Abdolmaleki, H. (2023), "Proposing a dynamic stiffness method for the free vibration of bi-directional functionally-graded timoshenko nanobeams", Adv. Nano Res., 14(2), 127-139. https://doi.org/10.12989/.2023.14.2.127.
- Hadji, L. and Avcar, M. (2021), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519. https://doi.org/10.22055/JACM.2020.35328.2628.
- Hatami, S., Ronagh, H.R. and Azhari, M. (2008), "Exact free vibration analysis of axially moving viscoelastic plates", Comput. Struct., 86(17-18), 1738-1746. https://doi.org/10.1016/j.compstruc.2008.02.002.
- Hosseini, H.S., Khorshidi, K. and Payandeh, H. (2009), "Vibration analysis of moderately thick rectangular plates with internal line support using the Rayleigh-Ritz approach", Scientia Iranica, 16(1), 22-39.
- Kumar, V., Singh, S.J., Saran, V.H. and Harsha, S.P. (2021), "Exact solution for free vibration analysis of linearly varying thickness FGM plate using Galerkin-Vlasov's method", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(4), 880-897. https://doi.org/10.1177/1464420720980491.
- Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1-2), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
- Malik, M. and Bert, C.W. (1998), "Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method", Int. J. Solids Struct., 35(3-4), 299-318. https://doi.org/10.1016/S0020-7683(97)00073-5.
- Marandi, S.M. and Karimipour, I. (2023), "Free vibration analysis of a nanoscale FG-CNTRCs sandwich beam with flexible core: Implementing an extended high order approach", Eng. Struct., 276, 115320. https://doi.org/10.1016/j.engstruct.2022.115320.
- Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
- Mousavi, S.B., Amir, S., Jafari, A. and Arshid, E. (2021), "Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories", Adv. Nano Res., 10(3), 235-251. https://doi.org/10.12989/anr.2021.10.3.235.
- Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
- Riahi, F., Mamghaderi, V., Zirakian, T. and Sanaati, B. (2019), "Further assessment of buckling stability of steel plates", Int. J. Civil Eng. Technol., 10(4), 1715-1721.
- Rout, M. and Hota, S.S. (2023), "Geometrically nonlinear free vibration of CNTs reinforced sandwich conoidal shell in thermal environment", Acta Mechanica, 1-18. https://doi.org/10.1007/s00707-023-03508-3.
- Soltani, M.R., Hatami, S., Azhari, M. and Ronagh, H.R. (2016), "Dynamic stiffness method for free vibration of moderately thick functionally graded plates", Mech. Adv. Compos. Struct., 3(1), 15-30. https://doi.org/10.22075/macs.2016.404.
- Soni, S.K., Thomas, B., Swain, A. and Roy, T. (2022), "Functionally graded carbon nanotubes reinforced composite structures: An extensive review", Compos. Struct., 299, 116075. https://doi.org/10.1016/j.compstruct.2022.116075.
- Talebi, S., Arvin, H. and Beni, Y.T. (2023), "Thermal free vibration examination of sandwich piezoelectric agglomerated randomly oriented CNTRC Timoshenko beams regarding pyroelectricity", Eng. Anal. Bound. Elem., 146, 500-516. https://doi.org/10.1016/j.enganabound.2022.11.013.
- Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
- Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-hill, New York.
- Wittrick, W.H. and Williams, F.W. (1974), "Buckling and vibration of anisotropic or isotropic plate assemblies under combined loadings", Int. J. Mech. Sci., 16(4), 209-239. https://doi.org/10.1016/0020-7403(74)90069-1.
- Wolfram Research, Inc. (2024), Mathematica, Version 14.0, Champaign, IL, U.S.A. https://www.wolfram.com
- Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stabil. Dyn., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118.
- Wu, X. and Fang, T. (2022), "Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes", Adv. Nano Res., 12(6), 617-627. https://doi.org/10.12989/anr.2022.12.6.617.
- Yang, Z. and He, D. (2019), "Vibration and buckling of functionally graded sandwich micro-plates based on a new size-dependent model", Int. J. Appl. Mech., 11(1), 1950004. https://doi.org/10.1142/S1758825119500042.
- Yang, Z., Wu, P., Liu, W. and Fang, H. (2020), "Analytical solutions for functionally graded sandwich plates bonded by viscoelastic interlayer based on kirchhoff plate theory", Int. J. Appl. Mech., 12(6), 2050062. https://doi.org/10.1142/S1758825120500623.
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solids Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct, 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.