DOI QR코드

DOI QR Code

A narrative review of genomic characteristics, serotype, immunogenicity, and vaccine development of Streptococcus pneumoniae capsular polysaccharide

  • Ratna Fathma Sari (Biomedical Sciences, Faculty of Medicine, University of Indonesia) ;
  • Fadilah Fadilah (Medical Chemistry Department, Faculty of Medicine, University of Indonesia) ;
  • Yustinus Maladan (Eijkman Research Center for Molecular Biology, National Research and Innovation Agency) ;
  • Rosantia Sarassari (Eijkman Research Center for Molecular Biology, National Research and Innovation Agency) ;
  • Dodi Safari (Eijkman Research Center for Molecular Biology, National Research and Innovation Agency)
  • Received : 2023.09.29
  • Accepted : 2024.04.05
  • Published : 2024.04.30

Abstract

This narrative review describes genomic characteristic, serotyping, immunogenicity, and vaccine development of Streptococcus pneumoniae capsular polysaccharide (CPS). CPS is a primary virulence factor of S. pneumoniae. The genomic characteristics of S. pneumoniae CPS, including the role of biosynthetic gene and genetic variation within cps (capsule polysaccharide) locus which may lead to serotype replacement are still being investigated. One hundred unique serotypes of S. pneumoniae have been identified through various methods of serotyping using phenotypic and genotypic approach. The advantages and limitations of each method are various, emphasizing the need for accurate and comprehensive serotyping for effective disease surveillance and vaccine targeting. In addition, we elaborate the critical role of CPS in vaccine development by providing an overview of immunogenicity, ongoing research of pneumococcal vaccines, and the impact on disease burden.

Keywords

References

  1. Brown J, Hammerschmidt S, Orihuela C. Streptococcus pneumoniae: molecular mechanisms of host-pathogen interactions. Amsterdam: Elsevier/Academic Press; 2015.
  2. Masomian M, Ahmad Z, Gew LT, Poh CL. Development of next generation Streptococcus pneumoniae vaccines conferring broad protection. Vaccines (Basel) 2020;8:132.
  3. Centers for Disease Control and Prevention. Pneumococcal disease [Internet]. Atlanta (GA): Centers for Disease Control and Prevention; 2023 [cited 2023 Aug 29]. Available from: https://www.cdc.gov/pneumococcal/about/facts.html
  4. Grant LR, Meche A, McGrath L, et al. Risk of pneumococcal disease in US adults by age and risk profile. Open Forum Infect Dis 2023;10:ofad192.
  5. Centers for Disease Control and Prevention. FastStats: pneumonia [Internet]. Atlanta (GA): Centers for Disease Control and Prevention; 2022 [cited 2023 Sep 27]. Available from: https://www.cdc.gov/nchs/fastats/pneumonia.htm
  6. Paton JC, Trappetti C. Streptococcus pneumoniae capsular polysaccharide. Microbiol Spectr 2019;7:10.1128/microbiolspec.gpp3-0019-2018.
  7. Gierke R, Wodi AP, Kobayashi M. Pneumococcal disease [Internet]. Atlanta (GA): Centers for Disease Control and Prevention; 2021 [cited 2023 Sep 27]. Available from: https://www.cdc.gov/vaccines/pubs/pinkbook/pneumo.html
  8. Muller A, Kleynhans J, de Gouveia L, et al. Streptococcus pneumoniae serotypes associated with death, South Africa, 2012-2018. Emerg Infect Dis 2022;28:166-79.
  9. Cleary DW, Jones J, Gladstone RA, et al. Changes in serotype prevalence of Streptococcus pneumoniae in Southampton, UK between 2006 and 2018. Sci Rep 2022;12:13332.
  10. Guo MY, Shi XH, Gao W, et al. The dynamic change of serotype distribution and antimicrobial resistance of pneumococcal isolates since PCV13 administration and COVID-19 control in Urumqi, China. Front Cell Infect Microbiol 2023;13:1110652.
  11. Bentley SD, Aanensen DM, Mavroidi A, et al. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2006;2:e31.
  12. Nagaraj G, Ganaie F, Govindan V, Ravikumar KL. Development of PCRSeqTyping: a novel molecular assay for typing of Streptococcus pneumoniae. Pneumonia (Nathan) 2017;9:8.
  13. Kapatai G, Sheppard CL, Al-Shahib A, et al. Whole genome sequencing of Streptococcus pneumoniae: development, evaluation and verification of targets for serogroup and serotype prediction using an automated pipeline. PeerJ 2016;4:e2477.
  14. Amari S, Warda K, Elkamouni Y, Arsalane L, Bouskraoui M, Zouhair S. Serotype distribution and antimicrobial resistance of Streptococcus pneumoniae among children with acute otitis media in Marrakech, Morocco. Iran J Microbiol 2022;14:47-55.
  15. Ganaie F, Saad JS, McGee L, et al. A new pneumococcal capsule type, 10D, is the 100th serotype and has a large cps fragment from an oral Streptococcus. mBio 2020;11:e00937-20.
  16. Centers for Disease Control and Prevention. Pneumococcal vaccination: what everyone should know [Internet]. Atlanta (GA): Centers for Disease Control and Prevention; 2023 [cited 2023 Sep 27]. Available from: https://www.cdc.gov/vaccines/vpd/pneumo/public/index.html
  17. Centers for Disease Control and Prevention. Pneumococcal vaccination: summary of who and when to vaccinate [Internet]. Atlanta (GA): centers for disease control and prevention; 2023 [cited 2023 Sep 27]. Available from: https://www.cdc.gov/vaccines/vpd/pneumo/hcp/who-when-tovaccinate.html
  18. Dhoubhadel BG, Morimoto K. Prevention of pneumococcal diseases: the challenge remains. Lancet Glob Health 2022;10:e1375-6.
  19. Licciardi P, Papadatou I. Pneumococcal vaccines: challenges and prospects. Vaccines (Basel) 2019;7:25.
  20. Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 2018;16:355-67.
  21. Mousavi SF, Nobari S, Rahmati Ghezelgeh F, et al. Serotyping of Streptococcus pneumoniae isolated from Tehran by multiplex PCR: are serotypes of clinical and carrier isolates identical? Iran J Microbiol 2013;5:220-6.
  22. Domenech A, Moreno J, Ardanuy C, Linares J, de la Campa AG, Martin-Galiano AJ. A novel typing method for Streptococcus pneumoniae using selected surface proteins. Front Microbiol 2016;7:420.
  23. Subramanian K, Henriques-Normark B, Normark S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: from nasopharyngeal colonizer to intracellular pathogen. Cell Microbiol 2019;21:e13077.
  24. Henriques-Normark B, Tuomanen EI. The pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med 2013;3:a010215.
  25. Nelson AL, Roche AM, Gould JM, Chim K, Ratner AJ, Weiser JN. Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect Immun 2007;75:83-90.
  26. Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Muller E, Rohde M. Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 2005;73:4653-67.
  27. Brooks LRK, Mias GI. Streptococcus pneumoniae's virulence and host immunity: aging, diagnostics, and prevention. Front Immunol 2018;9:1366.
  28. Wen Z, Liu Y, Qu F, Zhang JR. Allelic variation of the capsule promoter diversifies encapsulation and virulence in Streptococcus pneumoniae. Sci Rep 2016;6:30176.
  29. Shainheit MG, Mule M, Camilli A. The core promoter of the capsule operon of Streptococcus pneumoniae is necessary for colonization and invasive disease. Infect Immun 2014;82:694-705.
  30. Zheng Y, Zhang X, Wang X, Wang L, Zhang J, Yin Y. ComE, an essential response regulator, negatively regulates the expression of the capsular polysaccharide locus and attenuates the bacterial virulence in Streptococcus pneumoniae. Front Microbiol 2017;8:277.
  31. Mostowy RJ, Croucher NJ, De Maio N, et al. Pneumococcal capsule synthesis locus cps as evolutionary hotspot with potential to generate novel serotypes by recombination. Mol Biol Evol 2017;34:2537-54.
  32. Varvio SL, Auranen K, Arjas E, Makela PH. Evolution of the capsular regulatory genes in streptococcus pneumoniae. J Infect Dis 2009;200:1144-51.
  33. Nakamoto R, Kwan JM, Chin JF, et al. The bacterial tyrosine kinase system CpsBCD governs the length of capsule polymers. Proc Natl Acad Sci U S A 2021;118:e2103377118.
  34. Geno KA, Hauser JR, Gupta K, Yother J. Streptococcus pneumoniae phosphotyrosine phosphatase CpsB and alterations in capsule production resulting from changes in oxygen availability. J Bacteriol 2014;196:1992-2003.
  35. Morona JK, Morona R, Miller DC, Paton JC. Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J Bacteriol 2002;184:577-83.
  36. Glanville DG, Gazioglu O, Marra M, et al. Pneumococcal capsule expression is controlled through a conserved, distal cis-regulatory element during infection. PLoS Pathog 2023;19:e1011035.
  37. Zheng YD, Pan Y, He K, et al. SPD_1495 contributes to capsular polysaccharide synthesis and virulence in Streptococcus pneumoniae. mSystems 2020;5:e00025-20.
  38. Wyres KL, Lambertsen LM, Croucher NJ, et al. Pneumococcal capsular switching: a historical perspective. J Infect Dis 2013;207:439-49.
  39. Azarian T, Grant LR, Arnold BJ, et al. The impact of serotype-specific vaccination on phylodynamic parameters of Streptococcus pneumoniae and the pneumococcal pangenome. PLoS Pathog 2018;14:e1006966.
  40. Brown JS. Single-nucleotide polymorphisms within the cps loci: another potential source of clinically important genetic variation for Streptococcus pneumoniae? Infect Immun 2021;89:e0037421.
  41. Yokota SI, Tsukamoto N, Sato T, Ohkoshi Y, Yamamoto S, Ogasawara N. Serotype replacement and an increase in non-encapsulated isolates among community-acquired infections of Streptococcus pneumoniae during post-vaccine era in Japan. IJID Reg 2023;8:105-10.
  42. Kamboj KK, Kirchner HL, Kimmel R, Greenspan NS, Schreiber JR. Significant variation in serotype-specific immunogenicity of the seven-valent Streptococcus pneumoniae capsular polysaccharide-CRM197 conjugate vaccine occurs despite vigorous T cell help induced by the carrier protein. J Infect Dis 2003;187:1629-38.
  43. Lo SW, Gladstone RA, van Tonder AJ, et al. Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study. Lancet Infect Dis 2019;19:759-69.
  44. Hanquet G, Krizova P, Dalby T, et al. Serotype replacement after introduction of 10-valent and 13-valent pneumococcal conjugate vaccines in 10 countries, Europe. Emerg Infect Dis 2022;28:137-8.
  45. Geno KA, Gilbert GL, Song JY, et al. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev 2015;28:871-99.
  46. Garcia-Garcia S, Perez-Arguello A, Henares D, Timoneda N, Munoz-Almagro C. Rapid identification, capsular typing and molecular characterization of Streptococcus pneumoniae by using whole genome nanopore sequencing. BMC Microbiol 2020;20:347.
  47. Habib M, Porter BD, Satzke C. Capsular serotyping of Streptococcus pneumoniae using the Quellung reaction. J Vis Exp 2014;(84):e51208.
  48. Jauneikaite E, Tocheva AS, Jefferies JM, et al. Current methods for capsular typing of Streptococcus pneumoniae. J Microbiol Methods 2015;113:41-9.
  49. Epping L, van Tonder AJ, Gladstone RA, et al. SeroBA: rapid high-throughput serotyping of Streptococcus pneumoniae from whole genome sequence data. Microb Genom 2018;4:e000186.
  50. Knight JR, Dunne EM, Mulholland EK, et al. Determining the serotype composition of mixed samples of pneumococcus using whole-genome sequencing. Microb Genom 2021;7:mgen000494.
  51. Sheppard CL, Manna S, Groves N, et al. PneumoKITy: a fast, flexible, specific, and sensitive tool for Streptococcus pneumoniae serotype screening and mixed serotype detection from genome sequence data. Microb Genom 2022;8:mgen000904.
  52. Adler H, Ferreira DM, Gordon SB, Rylance J. Pneumococcal capsular polysaccharide immunity in the elderly. Clin Vaccine Immunol 2017;24:e00004-17.
  53. Garrido HM, Schnyder JL, Tanck MW, et al. Immunogenicity of pneumococcal vaccination in HIV infected individuals: a systematic review and meta-analysis. EClinicalMedicine 2020;29-30:100576.
  54. Nunes MC, Madhi SA. Safety, immunogenicity and efficacy of pneumococcal conjugate vaccine in HIV-infected individuals. Hum Vaccin Immunother 2012;8:161-73.
  55. Madhi SA, Adrian P, Cotton MF, et al. Effect of HIV infection status and anti-retroviral treatment on quantitative and qualitative antibody responses to pneumococcal conjugate vaccine in infants. J Infect Dis 2010;202:355-61.
  56. Thanawastien A, Cartee RT, Griffin TJ 4th, Killeen KP, Mekalanos JJ. Conjugate-like immunogens produced as protein capsular matrix vaccines. Proc Natl Acad Sci U S A 2015;112:E1143-51.
  57. Daniels CC, Rogers PD, Shelton CM. A review of pneumococcal vaccines: current polysaccharide vaccine recommendations and future protein antigens. J Pediatr Pharmacol Ther 2016;21:27-35.
  58. Djennad A, Ramsay ME, Pebody R, et al. Effectiveness of 23-valent polysaccharide pneumococcal vaccine and changes in invasive pneumococcal disease incidence from 2000 to 2017 in those aged 65 and over in England and Wales. EClinicalMedicine 2019;6:42-50.
  59. Nielsen KF, Nielsen LB, Lomholt FK, et al. Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against invasive pneumococcal disease among 948,263 individuals≥65 years of age: a Danish cohort study. Eur J Clin Microbiol Infect Dis 2022;41:1473-7.
  60. Richter SS, Heilmann KP, Dohrn CL, Riahi F, Diekema DJ, Doern GV. Pneumococcal serotypes before and after introduction of conjugate vaccines, United States, 1999-2011(1.). Emerg Infect Dis 2013;19:1074-83.
  61. Peckeu L, van der Ende A, de Melker HE, Sanders EA, Knol MJ. Impact and effectiveness of the 10-valent pneumococcal conjugate vaccine on invasive pneumococcal disease among children under 5 years of age in the Netherlands. Vaccine 2021;39:431-7.
  62. Savulescu C, Krizova P, Valentiner-Branth P, et al. Effectiveness of 10 and 13-valent pneumococcal conjugate vaccines against invasive pneumococcal disease in European children: SpIDnet observational multicentre study. Vaccine 2022;40:3963-74.
  63. Stacey HL, Rosen J, Peterson JT, et al. Safety and immunogenicity of 15-valent pneumococcal conjugate vaccine (PCV-15) compared to PCV-13 in healthy older adults. Hum Vaccin Immunother 2019;15:530-9.
  64. Grant LR, Slack MP, Theilacker C, et al. Distribution of serotypes causing invasive pneumococcal disease in children from high-income countries and the impact of pediatric pneumococcal vaccination. Clin Infect Dis 2023;76:e1062-70.
  65. Teixeira R, Kossyvaki V, Galvez P, Mendez C. Pneumococcal serotype evolution and burden in European adults in the last decade: a systematic review. Microorganisms 2023;11:1376.
  66. Hurley D, Griffin C, Young M, et al. Safety, tolerability, and immunogenicity of a 20-valent pneumococcal conjugate vaccine (PCV20) in adults 60 to 64 years of age. Clin Infect Dis 2021;73:e1489-97.
  67. Campling J, Vyse A, Liu HH, et al. A review of evidence for pneumococcal vaccination in adults at increased risk of pneumococcal disease: risk group definitions and optimization of vaccination coverage in the United Kingdom. Expert Rev Vaccines 2023;22:785-800.
  68. Collins AM, Wright AD, Mitsi E, et al. First human challenge testing of a pneumococcal vaccine: double-blind randomized controlled trial. Am J Respir Crit Care Med 2015;192:853-8.
  69. Musher DM, Anderson R, Feldman C. The remarkable history of pneumococcal vaccination: an ongoing challenge. Pneumonia (Nathan) 2022;14:5.
  70. Varghese R, Neeravi A, Subramanian N, et al. Clonal similarities and sequence-type diversity of invasive and carriage Streptococcus pneumoniae in India among children under 5 years. Indian J Med Microbiol 2019;37:358-62.
  71. Luck JN, Tettelin H, Orihuela CJ. Sugar-coated killer: serotype 3 pneumococcal disease. Front Cell Infect Microbiol 2020;10:613287.
  72. Kwun MJ, Ion AV, Cheng HC, et al. Post-vaccine epidemiology of serotype 3 pneumococci identifies transformation inhibition through prophage-driven alteration of a non-coding RNA. Genome Med 2022;14:144.
  73. Choi EH, Zhang F, Lu YJ, Malley R. Capsular polysaccharide (CPS) release by serotype 3 pneumococcal strains reduces the protective effect of anti-type 3 CPS antibodies. Clin Vaccine Immunol 2015;23:162-7.