DOI QR코드

DOI QR Code

Nuclear energy, economic growth and CO2 emissions in Pakistan: Evidence from extended STRIPAT model

  • Muhammad Yousaf Raza (School of Economics, Shandong Technology and Business University) ;
  • Songlin Tang (School of Economics, Shandong Technology and Business University)
  • Received : 2023.10.31
  • Accepted : 2024.02.03
  • Published : 2024.07.25

Abstract

Pakistan is a developing country whose maximum amount of mixed energy is provided by electricity, oil, coal, and gas. The study objective is to analyze the six major social factors to describe the significance of nuclear energy and CO2 emissions at the decisive point coming from income, trade, energy, and urbanization. This study has tried to analyze the impact of different factors (i.e., fossil energy, GDP per capita, overall population, urban population, and merchandise trade) on Pakistan's CO2 emissions using the extended STRIPAT model from 1986 to 2021. Ridge regression has been applied to analyze the parameters due to the multicollinearity problem in the data. The results show that (i) all the factors show significant results on carbon emissions; (ii) population and energy factors are the huge contributors to raising CO2 emissions by 0.15% and 0.16%; however, merchandise and GDP per capita are the least contributing factors by 0.12% and 0.13% due to import/export and income level in Pakistan, and (iii) nuclear energy and substitute overall show a prominent and growing impact on CO2 emissions by 0.16% and 0.15% in Pakistan. Finally, empirical results have wider applications for energy-saving, energy substitution, capital investment, and CO2 emissions mitigation policies in developing countries. Moreover, by investigating renewable energy technologies and renewable energy sources, insights are provided on future CO2 emissions reduction.

Keywords

Acknowledgement

This paper is supported by the National Social Science Fund of China (Grant No. 21BJY113).

References

  1. IEA, International Energy Agency, 2021. Www.Iea.Org/Reports/Global-EnergyReview-Co2-Emissions-in-2021-2.
  2. M.Y. Raza, B. Lin, Analysis of Pakistan's electricity generation and CO2 emissions: based on decomposition and decoupling approach, J. Clean. Prod. 359 (2022) 132074, https://doi.org/10.1016/j.jclepro.2022.132074.
  3. U.K. Pata, M.T. Kartal, Impact of nuclear and renewable energy sources on environment quality: testing the EKC and LCC hypotheses for South Korea, Nucl. Eng. Technol. 55 (2023) 587-594, https://doi.org/10.1016/j.net.2022.10.027.
  4. Rebecca Lindsey, Luann Dahlman, Global Climate Change, 2022. Www.Climate.Gov/News-Features/Understanding-Climate/Climate-Change-Global-Temperature.
  5. IPCC, Working Group I, Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2021.
  6. M. Yousaf Raza, B. Lin, Development trend of Pakistan's natural gas consumption: a sectorial decomposition analysis, Energy 278 (2023) 127872, https://doi.org/10.1016/j.energy.2023.127872.
  7. HDIP, Hydrocarbon Development Institute of Pakistan), Pakistan energy yearbook. Ministry of energy (Petroleum Division) Hydrocarbon development institute of Pakistan. https://hdip.com.pk/contents.php?cid=32, 2021.
  8. B. Jiang, M.Y. Raza, Research on China's renewable energy policies under the dual carbon goals: a political discourse analysis, Energy Strategy Rev. 48 (2023) 101118, https://doi.org/10.1016/j.esr.2023.101118.
  9. A.N. Khan, X. En, M.Y. Raza, N.A. Khan, A. Ali, Sectorial study of technological progress and CO2 emission: insights from a developing economy, Technol. Forecast. Soc. Change 151 (2020) 119862, https://doi.org/10.1016/j.techfore.2019.119862.
  10. A. Maxim, Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis, Energy Pol. 65 (2014) 284-297, https://doi.org/10.1016/j.enpol.2013.09.059.
  11. N. Mahmood, Danish, Z. Wang, B. Zhang, The role of nuclear energy in the correction of environmental pollution: evidence from Pakistan, Nucl. Eng. Technol. 52 (2020) 1327-1333, https://doi.org/10.1016/j.net.2019.11.027.
  12. M.T. Majeed, I. Ozturk, I. Samreen, T. Luni, Evaluating the asymmetric effects of nuclear energy on carbon emissions in Pakistan, Nucl. Eng. Technol. 54 (2022) 1664-1673, https://doi.org/10.1016/j.net.2021.11.021.
  13. R.E.A. T, Y.R. Dietz, Driving the human ecological footprint, Front. Ecol. Environ. 5 (2007) 13-18.
  14. S.A. Sarkodie, V. Strezov, Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries, Sci. Total Environ. 646 (2019) 862-871, https://doi.org/10.1016/j.scitotenv.2018.07.365.
  15. O.B. Adekoya, J.A. Oliyide, O.T. Kenku, O.F. Ajayi, China's technological spillover effect on the energy efficiency of the BRI countries, Energy Pol. 182 (2023) 113740, https://doi.org/10.1016/j.enpol.2023.113740.
  16. O. Napolitano, P. Foresti, K. Kounetas, N. Spagnolo, The impact of energy, renewable and CO2 emissions efficiency on countries' productivity, Energy Econ. 125 (2023) 106795, https://doi.org/10.1016/j.eneco.2023.106795.
  17. B. Lin, M.Y. Raza, Analysis of energy related CO2 emissions in Pakistan, J. Clean. Prod. 219 (2019) 981-993, https://doi.org/10.1016/j.jclepro.2019.02.112.
  18. M.Y. Raza, M. Wasim, M.S. Sarwar, Development of renewable energy technologies in rural areas of Pakistan, energy sources, Part A: recovery, utilization, Environ. Eff. 42 (2020) 740-760, https://doi.org/10.1080/15567036.2019.1588428.
  19. M.Y. Raza, B. Lin, Renewable energy substitution and energy technology impact in a transitional economy: a perspective from Pakistan, J. Clean. Prod. 360 (2022) 132163, https://doi.org/10.1016/j.jclepro.2022.132163.
  20. F. Guang, Y. Deng, L. Wen, B. Sharp, S. Hong, Impact of regional energy allocation distortion on carbon emission efficiency: evidence from China, J. Environ. Manag. 342 (2023) 118241, https://doi.org/10.1016/j.jenvman.2023.118241.
  21. Yu Ma, A Study on the Estimation of the Desirable Range of Cross-Border Capital Flows in Emerging Economies[M], China Social Sciences Press, Beijing, 2023.
  22. E. Dogan, R. Inglesi-Lotz, The impact of economic structure to the environmental Kuznets curve (EKC) hypothesis: evidence from European countries, Environ. Sci. Pollut. Control Ser. 27 (2020) 12717-12724, https://doi.org/10.1007/s11356-020-07878-2.
  23. U.K. Pata, Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: testing EKC hypothesis with structural breaks, J. Clean. Prod. 187 (2018) 770-779, https://doi.org/10.1016/j.jclepro.2018.03.236.
  24. X. Gu, X. Shen, X. Zhong, T. Wu, S. Rahim, Natural resources and undesired productions of environmental outputs as green growth: EKC in the perspective of green finance and green growth in the G7 region, Resour. Pol. 82 (2023) 103552, https://doi.org/10.1016/j.resourpol.2023.103552.
  25. T. Chang, C.-M. Hsu, S.-T. Chen, M.-C. Wang, C.-F. Wu, Revisiting economic growth and CO2 emissions nexus in Taiwan using a mixed-frequency VAR model, Econ. Anal. Pol. 79 (2023) 319-342, https://doi.org/10.1016/j.eap.2023.05.022.
  26. M.Y. Raza, B. Lin, Energy efficiency and factor productivity in Pakistan: policy perspectives, Energy 247 (2022) 123461, https://doi.org/10.1016/j.energy.2022.123461.
  27. M.Y. Raza, B. Lin, Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: an economic and policy perspectives, Energy Pol. 173 (2023) 113379, https://doi.org/10.1016/j.enpol.2022.113379.
  28. J. Yang, W. Cai, M. Ma, L. Li, C. Liu, X. Ma, L. Li, X. Chen, Driving forces of China's CO2 emissions from energy consumption based on Kaya-LMDI methods, Sci. Total Environ. 711 (2020) 134569, https://doi.org/10.1016/j.scitotenv.2019.134569.
  29. V. Moutinho, M. Madaleno, R. Inglesi-Lotz, E. Dogan, Factors affecting CO2 emissions in top countries on renewable energies: a LMDI decomposition application, Renew. Sustain. Energy Rev. 90 (2018) 605-622, https://doi.org/10.1016/j.rser.2018.02.009.
  30. B. Su, B.W. Ang, Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data, Energy Econ. 126 (2023) 106977, https://doi.org/10.1016/j.eneco.2023.106977.
  31. B. Lin, M.Y. Raza, Coal and economic development in Pakistan: a necessity of energy source, Energy 207 (2020) 118244, https://doi.org/10.1016/j.energy.2020.118244.
  32. Q. Wang, J. Guo, R. Li, X. Jiang, Exploring the role of nuclear energy in the energy transition: a comparative perspective of the effects of coal, oil, natural gas, renewable energy, and nuclear power on economic growth and carbon emissions, Environ. Res. 221 (2023) 115290, https://doi.org/10.1016/j.envres.2023.115290.
  33. J. Price, I. Keppo, P.E. Dodds, The role of new nuclear power in the UK's net-zero emissions energy system, Energy 262 (2023) 125450, https://doi.org/10.1016/j.energy.2022.125450.
  34. O. Ozgur, V. Yilanci, M. Kongkuah, Nuclear energy consumption and CO2 emissions in India: evidence from Fourier ARDL bounds test approach, Nucl. Eng. Technol. 54 (2022) 1657-1663, https://doi.org/10.1016/j.net.2021.11.001.
  35. K. Saidi, A. Omri, Reducing CO2 emissions in OECD countries: do renewable and nuclear energy matter? Prog. Nucl. Energy 126 (2020) 103425 https://doi.org/10.1016/j.pnucene.2020.103425.
  36. K. Dong, R. Sun, H. Jiang, X. Zeng, CO2 emissions, economic growth, and the environmental Kuznets curve in China: what roles can nuclear energy and renewable energy play? J. Clean. Prod. 196 (2018) 51-63, https://doi.org/10.1016/j.jclepro.2018.05.271.
  37. Review of World Energy, BP Statistical Review of World Energy, 2023. Www.Bp.Com/En/Global/Corporate/Energy-Economics/Statistical-Review-of-WorldEnergy.Html.
  38. World Bank, World Development Indicators, 2022. Databank.Worldbank.Org/Reports.Aspx?Source=World-Development-Indicators.
  39. P.R. Ehrlich, J.P. Holdren, Impact of population growth, Science 171 (1971) 1212-1217, https://doi.org/10.1126/science.171.3977.1212 (1979).
  40. R.G. Ridker, Population, resources, and the environment, in: [Washington, Commission on Population Growth and the American Future; for Sale by the Supt. Of Docs., U.S. Govt. Print. Off.], 1972.
  41. C.A. Jenne, R.K. Cattell, Structural change and energy efficiency in industry, Energy Econ. 5 (1983) 114-123, https://doi.org/10.1016/0140-9883(83)90018-X.
  42. L. Wen, Z. Li, Driving forces of national and regional CO2 emissions in China combined IPAT-E and PLS-SEM model, Sci. Total Environ. 690 (2019) 237-247, https://doi.org/10.1016/j.scitotenv.2019.06.370.
  43. B. Xu, B. Lin, Regional differences in the CO2 emissions of China's iron and steel industry: regional heterogeneity, Energy Pol. 88 (2016) 422-434, https://doi.org/10.1016/j.enpol.2015.11.001.
  44. Y. Wang, T. Zhao, Impacts of energy-related CO2 emissions: evidence from under developed, developing and highly developed regions in China, Ecol. Indicat. 50 (2015) 186-195, https://doi.org/10.1016/j.ecolind.2014.11.010.
  45. T, R.E.A. Dietz, Rethinking the environmental impacts of population, affluence and technology, Hum. Ecol. Rev. 1 (1994) 277-300.
  46. M.Y. Raza, M.M. Hasan, Estimating the multiple impacts of technical progress on Bangladesh's manufacturing and industrial sector's CO2 emissions: a quantile regression approach, Energy Rep. 8 (2022) 2288-2301, https://doi.org/10.1016/j.egyr.2022.01.005.
  47. B. Lin, M.Y. Raza, Energy substitution effect on transport sector of Pakistan: a trans-log production function approach, J. Clean. Prod. 251 (2020) 119606, https://doi.org/10.1016/j.jclepro.2019.119606.
  48. B. Lin, P. Atsagli, Energy consumption, inter-fuel substitution and economic growth in Nigeria, Energy 120 (2017) 675-685, https://doi.org/10.1016/j.energy.2016.11.115.
  49. B. Lin, M.Y. Raza, Fuels substitution possibilities and the technical progress in Pakistan's agriculture sector, J. Clean. Prod. 314 (2021) 128021, https://doi.org/10.1016/j.jclepro.2021.128021.
  50. A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogonal problems, Technometrics 12 (1970) 55-67, https://doi.org/10.1080/00401706.1970.10488634.
  51. B. Lin, R. Fei, Analyzing inter-factor substitution and technical progress in the Chinese agricultural sector, Eur. J. Agron. 66 (2015) 54-61, https://doi.org/10.1016/j.eja.2015.02.005.
  52. P.K. Wesseh, B. Lin, Energy consumption, fuel substitution, technical change, and economic growth: implications for CO2 mitigation in Egypt, Energy Pol. 117 (2018) 340-347, https://doi.org/10.1016/j.enpol.2018.03.022.
  53. M.Y. Raza, B. Lin, X. Liu, Cleaner production of Pakistan's chemical industry: perspectives of energy conservation and emissions reduction, J. Clean. Prod. 278 (2021) 123888, https://doi.org/10.1016/j.jclepro.2020.123888.
  54. Kmenta Jan, Elements of Econometrics, second ed., Macmillan Publishing Company, New York, 1986. https://archive.org/details/elementsofecono m0003kmen. (Accessed 16 January 2024).
  55. B. Lin, R. Zhu, M.Y. Raza, Fuel substitution and environmental sustainability in India: perspectives of technical progress, Energy 261 (2022) 125309, https://doi. org/10.1016/j.energy.2022.125309.
  56. Vision 2025, Vision 2025, 2014. Pakistan 2025, One Nation-One Vision. Planning Commission, Ministry of Planning, Development & Reforms. Government of Pakistan, Islamabad, 2014 fics.seecs.edu.pk/Vision/Vision-2025/Pakistan-Vision2025.pdf.
  57. Vision 2035, Vision 2035, 2014. Pakistan 2035, One Nation-One Vision. Planning Commission, Ministry of Planning, Development & Reforms. Government of Pakistan, Islamabad, 2014. https://www.sdpi.org/publications/files/Pakistan%20 Energy%202035FINAL%2020th%20October%202014.pdf.
  58. Pakistan Economic Survey, Pakistan Economic Survey, 2021-2022, Ministry of Finance. Government of Pakistan, Islamabad, 2022. http://www.finance.gov.pk/survey/chapters_/Pakistan_ES_2021_2022_pdf.
  59. M.Y. Raza, B. Lin, Decoupling and mitigation potential analysis of CO2 emissions from Pakistan's transport sector, Sci. Total Environ. 730 (2020) 139000, https://doi.org/10.1016/j.scitotenv.2020.139000.
  60. B. Pan, Y. Zhang, Impact of affluence, nuclear and alternative energy on US carbon emissions from 1960 to 2014, Energy Strategy Rev. 32 (2020) 100581, https://doi.org/10.1016/j.esr.2020.100581.
  61. Ministry of Statistics, Pakistan Bureau of Statistics, 2022. Www.Pbs.Gov.Pk/Sites/Default/Files/Population_Census_2022_Results_0.Pdf.
  62. B. Lin, M.Y. Raza, Analysis of energy security indicators and CO2 emissions. A case from a developing economy, Energy 200 (2020) 117575, https://doi.org/10.1016/j.energy.2020.117575.
  63. T.P. Hughes, J.T. Kerry, A.H. Baird, S.R. Connolly, T.J. Chase, A. Dietzel, T. Hill, A. S. Hoey, M.O. Hoogenboom, M. Jacobson, A. Kerswell, J.S. Madin, A. Mieog, A. S. Paley, M.S. Pratchett, G. Torda, R.M. Woods, Global warming impairs stock-recruitment dynamics of corals, Nature 568 (2019) 387-390, https://doi.org/10.1038/s41586-019-1081-y.
  64. John McGarrity, Beth Walker, Chinese-Funded Energy Projects in Pakistan Likely to Damage Environment, 2015. Www.Eco-Business.Com/Opinion/ChineseFunded-Energy-Projects-in-Pakistan-Likely-to-Damage-Environment/.